1. no
2. yes; line n
3. yes; line n
4. yes; line m
5. yes; line n
6. no
7. no
8. yes; line m
9. Answers may vary.

Sample: $\overleftrightarrow{A E}, \overleftrightarrow{E C}, \overleftrightarrow{G A}$
11. $A B C D$
12. $E F H G$
10. Answers may vary.

Sample: $\overleftrightarrow{B F}, \overleftrightarrow{C D}, \overleftrightarrow{D F}$
13. $A B H F$
14. $E D C G$
15. $E F A D$
17. $\overleftrightarrow{R S}$
18. $\overleftrightarrow{V W}$
20. $\stackrel{X T}{ }$
21. planes $Q U X$ and $Q U V$
23. planes $U X T$ and $W X T$
25.

26.

29.

34. X
31. X
35. no
39. coplanar
42. noncoplanar
32. R
33. Q
36. yes
37. no
38. coplanar
41. coplanar

Answers for Lesson 1-3, pp. 19-22 Exercises (cont.)

44. Through any three noncollinear points there is exactly one plane. The ends of the legs of the tripod represent three noncollinear points, so they rest in one plane. Therefore, the tripod won't wobble.
45. Answers may vary. Sample:

46.

48.

50.

no
52.

yes
55. always
58. always
61.
a. 1
b. 1
c. 1
d. 1
e. A line and a point not on the line are always coplanar.

Answers for Lesson 1-3, pp. 19-22 Exercises (cont.)

62.

Post. 1-4: Through three noncollinear points there is exactly one plane.
63. Answers may vary. Sample:

Post. 1-3: If two planes intersect, then they intersect in exactly one line.
64. A, B, and D
65. Post. 1-1: Through any two points there is exactly one line.
66. Post. 1-3: If two planes intersect, then they intersect in exactly one line.
67. The end of one leg might not be coplanar with the ends of the other three legs. (Post. 1-4)
68.

yes
71.

no
69.

yes
72.

yes
70.

no
73.

no
74. Infinitely many; explanations may vary. Sample: Infinitely many planes can intersect in one line.

Answers for Lesson 1-3, pp. 19-22 Exercises (cont.)

75.

By Post. 1-1, points D and B determine a line and points A and D determine a line. The distress signal is on both lines and, by Post. 1-2, there can be only one location for the distress signal.
76. a. Since the plane is flat, the line would have to curve so as to contain the 2 points and not lie in the plane; but lines are straight.
b. One plane; Points A, B, and C are noncollinear. By Post. 1-4, they are coplanar. Then, by part (a), $\overleftrightarrow{A B}$ and $\overleftrightarrow{B C}$ are coplanar.
77. 1
78. $\frac{1}{4}$
79. 1

