Answers for Lesson 1-4, pp. 25-27 Exercises - **1.** \overline{RS} , \overline{RT} , \overline{RW} , \overline{ST} , \overline{SW} , \overline{TW} - **2.** \overrightarrow{RS} , \overrightarrow{ST} , \overrightarrow{TW} , \overrightarrow{WT} , \overrightarrow{TS} , \overrightarrow{SR} - **3.** a. \overrightarrow{TS} or \overrightarrow{TR} , \overrightarrow{TW} - **b.** \overrightarrow{SR} , \overrightarrow{ST} - 4. \overline{DF} 5. \overline{BC} 6. \overline{BE} , \overline{CF} - 7. $\overline{DE}, \overline{EF}, \overline{BE}$ - **8.** \overline{AD} , \overline{AB} , \overline{AC} - 9. \overline{BC} , \overline{EF} ## 10-11. Answers may vary. Samples: **10.** *ABC* || *DEF* 11. DEF, \overrightarrow{BC} - 12. \overrightarrow{FG} - **13.** Answers may vary. Sample: \overrightarrow{CD} , \overrightarrow{AB} - **14.** \overrightarrow{BG} , \overrightarrow{DH} , \overrightarrow{CL} 15. \overrightarrow{AF} **16.** true 17. False; they are skew. **18.** true **19.** False; they intersect above \overline{CG} . **20.** true **21.** False; they intersect above pt. *A*. **22.** False; they are \parallel . **23.** False; they are \parallel . - 24. - E D F - **25.** always **26.** never - **27.** always - **28.** always **29.** never - **30.** sometimes - **31.** always - 32. sometimes - 33. sometimes - **34.** C - **35.** Answers may vary. Sample: (0, 0); check students' graphs. ## Answers for Lesson 1-4, pp. 25–27 Exercises (cont.) - 36. a. Answers may vary. Sample: northeast and southwest - **b.** Answers may vary. Sample: northwest and southeast, east and west - **37.** Two lines can be parallel, skew, or intersecting in one point. Sample: train tracks—parallel; vapor trail of a northbound jet and an eastbound jet at different altitudes—skew; streets that cross—intersecting - **38.** Answers may vary. Sample: Skew lines cannot be contained in one plane. Therefore, they have "escaped" a plane. - **39. a.** The lines of intersection are parallel. - **b.** Examples may vary. Sample: The floor and ceiling are parallel. A wall intersects both. The lines of intersection are parallel. 40. a. one segment; \overline{EF} b. E = F = G 3 segments; \overline{EF} , \overline{EG} , \overline{FG} | C. | Number | Number of | |----|-----------|-----------| | | of points | segments | | | 2 | 1 | | | 3 | 3 | | | 4 | 6 | | | 5 | 10 | | | 6 | 15 | Answers may vary. Sample: For each "new" point, the number of new segments equals the number of "old" points. - **d.** 45 segments **e.** $\frac{n(n-1)}{2}$ - **41.** No; two different planes cannot intersect in more than one line. **42.** yes; plane P, for example - **43.** Answers may vary. Sample: \overrightarrow{VR} , \overrightarrow{QR} , \overrightarrow{SR} - **44.** \overrightarrow{QR} **45.** Yes; no; yes; explanations may vary.