Answers for Lesson 10-3, pp. 548–550 Exercises

1.
$$m \angle 1 = 120; m \angle 2 = 60; m \angle 3 = 30$$

2.
$$m \angle 4 = 90; m \angle 5 = 45; m \angle 6 = 45$$

3.
$$m \angle 7 = 60; m \angle 8 = 30; m \angle 9 = 60$$

9.
$$2192.4 \text{ cm}^2$$

14.
$$72 \text{ cm}^2$$

15.
$$384\sqrt{3}$$
 in.²

16.
$$162\sqrt{3} \text{ m}^2$$
 17. $75\sqrt{3} \text{ m}^2$

17.
$$75\sqrt{3} \text{ m}^2$$

18.
$$12\sqrt{3}$$
 in.²

23.
$$73 \text{ cm}^2$$

- **b.** 6 in.
- **c.** 3.7 in.
- **d.** Answers may vary. Sample: About 4.6 in.; the length of a side of a pentagon should be between 3.7 in. and 6 in.

26.
$$m \angle 1 = 36; m \angle 2 = 18; m \angle 3 = 72$$

27. The apothem is one leg of a rt. \triangle and the radius is the hypotenuse.

Answers for Lesson 10-3, pp. 548-550 Exercises (cont.)

28. a-c.

regular octagon

- **d.** Construct a 60° angle with vertex at circle's center.
- **29.** $600\sqrt{3} \text{ m}^2$

30. Check students' work.

31. 128 cm²

- **32.** $24\sqrt{3}$ cm², 41.6 cm²
- **33.** $900\sqrt{3}$ m², 1558.8 m²
- **34.** a. $b = s; h = \frac{\sqrt{3}}{2}s$ $A = \frac{1}{2}bh$

$$A = \frac{1}{2}s \cdot \frac{\sqrt{3}}{2}s$$

$$A = \frac{1}{4}s^2\sqrt{3}$$

b. apothem = $\frac{s\sqrt{3}}{6}$;

$$A = \frac{1}{2}ap = \frac{1}{2}\left(\frac{s\sqrt{3}}{6}\right)(3s)$$
$$= \frac{1}{4}s^2\sqrt{3}$$

35. The apothem is ⊥ to a side of the pentagon. Two right \(\text{\(\)}}}}}} \end{\(\text{\(\)}}}}}} \end{\(\text{\(\text{\) \exiting{\(\text{\(\text{\) \exiting{\(\text{\(\text{\(\text{\(\text{\(\text{\) \exiting{\(\text{\(\text{\) \exiting{\(\text{\(\text{\) \exiting{\(\text{\(\text{\(\text{\(\text{\(\text{\(\text{\(\text{\(\text{\(\text{\(\text{\) \exiting{\(\text{\(\text{\(\text{\(\text{\) \exiting{\(\text{\(\text{\) \exiting{\(\text{\(\text{\(\text{\(\text{\) \exiting{\(\text{\(\text{\) \int}}}}}} \text{\initity}\in\text{\initity}\\ \text{\initity}\\ \text{\) \exiting{\(\text{\initity}\\ \text{\) \exiting{\(\text{\initity}\\ \text{\initity}\

© Pearson Education, Inc., publishing as Pearson Prentice Hall. All rights reserved.

36. For regular n-gon ABCDE . . ., let P be the intersection of the bisectors of $\angle ABC$ and $\angle BCD$. $\overline{BC} \cong \overline{DC}$, $\angle BCP \cong \angle DCP$, and $\overline{CP} \cong \overline{CP}$, so $\triangle BCP \cong \triangle DCP$, and $\angle CBP \cong \angle CDP$ by CPCTC. Since $\angle BCP$ is half the size of $\angle ABC$ and $\angle ABC \cong \angle CDE$, $\angle CDP$ is half the size of $\angle CDE$. By a similar argument, P is on the bisector of each \angle around the polygon.

The smaller angles formed by the bisectors are all \cong . By the Conv. of the Isosc. \triangle Thm., each of $\triangle APB$, BPC, CPD, and so on are isosceles with $\overline{AP} = \overline{BP} = \overline{CP} = \overline{DP}$ and so on. Thus, P is equidistant from the polygon's vertices, so P is the center of the polygon and the \angle bisectors are radii.

- **37.** a. (2.8, 2.8)
 - **b.** 5.6 units²
 - c. 45 units^2
- **38.** a. $A = \frac{1}{2}bh$ and $h = a \sin C$
 - **b.** two sides; included
 - **c.** Form $n ext{ } ext{$\triangle$}$ with the radii. $A(\operatorname{each } ext{\triangle}) = \frac{1}{2}r^2 \sin\left(\frac{360}{n}\right)$, so $A = \frac{nr^2}{2} \sin\left(\frac{360}{n}\right)$.

226