Answers for Lesson 10-5, pp. 561-563 Exercises

1. 173.8 cm^2

2. 84.3 in.²

3. 259.8 m^2

4. 2540.5 yd²

- **5**. **a**. 72
 - **b.** 36
 - **c.** about 8.1 in.
 - **d.** about 11.8 in.
 - **e.** about 58.8 in.
 - **f.** about 238 in.²
- **6.** 259.8 ft^2

7. 47.0 in.²

8. 1131.4 cm^2

9. 8 ft^2

10. 151 m²

11. 27.7 m²

12. 18.0 ft²

13. 7554.0 m²

14. 311.3 km²

15. 151.4 mm²

16. 0.7 ft^2

17. 5523 yd²

- **18. a.** 50 mm²
 - **b.** 116 mm²
- 19. Answers may vary. Sample:
 - **1.** Find the apothem and the side \perp to apothem using a 30-60-90 \triangle with hyp. 1. Then use the formula

$$A = \frac{1}{2}ap.$$

2. After finding the apothem and the \perp side, the height of the equil. \triangle is the apothem + 1. Then use the formula $A = \frac{1}{2}bh$.

Answers for Lesson 10-5, pp. 561–563 Exercises (cont.)

20.	1,459,000	ft^2
20.	1,732,000	Ιt

28. (area of sq. A) =
$$4 \cdot (\text{area of sq. B})$$

29. (area of pent. A)
$$\approx 1.53 \cdot (\text{area of pent. B})$$

31. (area of oct. B)
$$\approx 1.17 \cdot (\text{area of oct. A})$$

32. (area of dec. A) =
$$0.01 \cdot (\text{area of dec. B})$$

33.
$$5.0 \text{ ft}^2$$

34. a. Each central
$$\angle$$
 measures $(360 \div n)$ and $m \angle C = \frac{1}{2}$ that measure or $(180 \div n)$.

b.
$$\tan C = \frac{s}{1} = s$$

c.
$$s = \tan C$$
, so $p = n \cdot 2(\tan C)$ or $2n(\tan C)$.

d. Since
$$a = 1$$
 and $p = 2n(\tan C)$, $A = \frac{1}{2}ap = \frac{1}{2}(1)(2n \tan C) = n(\tan C) = n(\tan \frac{180}{n})$.

e.
$$X \tan(180/X)$$

f. X increases by 1 and
$$Y_1$$
 approaches π .

- **g.** Answers may vary. Sample: 425; as X increases, Y_1 approaches π , so the first 4 viewable decimal places become fixed; the n-gons start to look like a circle of radius 1.
- **35.** Using steps similar to Ex. 34, $A = n(\cos \frac{180}{n})(\sin \frac{180}{n})$, which also appr. π as n increases.

320 ft

36.

37. (0.65)

© Pearson Education, Inc., publishing as Pearson Prentice Hall. All rights reserved.

Geometry Chapter 10 231