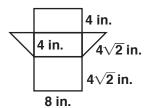

Answers for Lesson 11-2, pp. 611-614 Exercises


1. 1726 cm^2

2. 216 ft^2

3. $(80 + 32\sqrt{2})$ in.² or about 125.3 in.²

- 4. a. right hexagonal prism
 - **b.** 240 cm^2
 - c. $48\sqrt{3} \text{ cm}^2$
 - **d.** $(240 + 48\sqrt{3}) \text{ cm}^2$
- **5.** 120 ft^2 ; 220 ft^2

6. 96 in.²; 108 in.²

7. 880 cm^2 ; 1121 cm^2

8. $40\pi \text{ cm}^2$

9. $16.5\pi \text{ cm}^2$

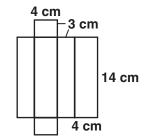
10. 101.5π in.²

11. 36.8 cm²

12. 236 in.²

13. 107 in.²

14. 226 m²


15. 1407 cm^2

16. 20 cm

17. 150 cm^2

© Pearson Education, Inc., publishing as Pearson Prentice Hall. All rights reserved

- **18.** A cylinder and a prism both have two \cong || bases. The bases of a cylinder are circles, and the bases of a prism are polygons.
- **19.** 4080 mm²
- **20.** Answers may vary. Sample:

- **21. a.** 94 units²
 - **b.** 376 units²
 - **c.** 4:1
 - **d.** 438 units^2 ; 1752 units^2 ; 4:1
 - **e.** The surface area becomes 4 times as large.
- **22.** A

- **23**. 47.5 in.²
- **24.** about 75.5 in.²

- **25. a.** 7 units
 - **b.** 196π units²
- **26.** a. A(3,0,0); B(3,5,0); C(0,5,0); D(0,5,4)
 - **b.** 5
 - **c.** 3
 - **d**. 4

Geometry

- \mathbf{e} . 94 units²
- **27.** cylinder of radius 4 and height 2; 48π units²
- **28.** cylinder of radius 2 and height 4; 24π units²
- **29.** cylinder of radius 2 and height 4; 24π units²
- **30.** cylinder of radius 4 and height 2; 48π units²

245

Answers for Lesson 11-2, pp. 611-614 Exercises (cont.)

- **31.** a. Lateral area is doubled.
 - **b.** Surface area is more than doubled.
 - **c.** S.A. = $2\pi r^2 + 2\pi r h$; if r doubles: S.A. = $2(4\pi r^2 + 2\pi r h)$. Since r is squared, surface area is more than doubled.
- **32.** a. $r \approx 1.2$ in.; h = 6 in.
 - **b.** about 54.0 in.²
- 33. $(148 + 66.5\pi)$ cm²
- **35.** $(220 8\pi)$ in.²
- **37. a.** 0, 8, 12, 6, 1
 - **b.** 1728 in.^2

- **34.** $(84 + 20\pi) \text{ m}^2$
 - **36.** h = 6 m; r = 3 m