Answers for Lesson 11-5, pp. 634-636 Exercises

- **1.** about 233,333 ft³
- **3.** 1296 in.³
- **5.** about 443.7 cm^3
- 7. 2048 m^3
- **9.** about 3714.5 mm^3
- **11.** $\frac{16}{3}\pi$ ft³; 17 ft³
- **13.** 36.75π in.³; 115 in.³
- **15.** about 4.7 cm^3
- 17. 312 cm^3

- **2.** 200 cm^3
- **4.** 50 m^3
- **6.** 300 in.³
- **8.** about 363.6 m³
- **10.** about 562.9 ft³
- **12.** $\frac{22}{3}\pi$ in.³; 23 in.³
- **14.** about 66.4 cm³
- **16.** 123 in.³
- **18.** 10,368 ft³
- **19.** They are equal; both volumes are $\frac{1}{3}\pi r^2 h$.
- **20.** a. $6,312,000 \text{ ft}^3$
 - **b.** 284 ft
- **21**. 6
- **22.** 3
- **23.** $3\sqrt{2}$
- **24.** 73 cm^3

- **25.** B
- **26.** cube: 8 units³, cone: $\frac{2}{3}\pi$ units³, pyramid: $\frac{8}{3}$ units³
- **27.** a. 120π ft³
 - **b.** $60\pi \text{ ft}^3$
 - c. $240\pi \text{ ft}^3$
- **28.** cone: 234.6 in.³; prism: 240 in.³; pyramid: 256 in.³
- **29.** cone with r = 4 and h = 3; 16π
- **30.** cone with r = 3 and h = 4; 12π

Answers for Lesson 11-5, pp. 634-636 Exercises (cont.)

- **31.** cylinder with r = 4, h = 3, with a cone of r = 4, h = 3 removed from it; 32π
- **32.** cone with r = 4, $h = 5\frac{1}{3}$, with a cone of r = 1, $h = 1\frac{1}{3}$ cut off the top, and a cylinder of r = 1, h = 4 cut out of its center; 24π
- **33. a.** The frustum has vol. $V = \frac{1}{3}\pi R^2 H \frac{1}{3}\pi r^2 h = \frac{1}{3}\pi (R^2 H r^2 h)$. Now if $h_1 = H h$ is the frustum's height, $V = \frac{1}{3}\pi (R^2 (h_1 + h) R^2 h) = \frac{1}{3}\pi (R^2 h_1 + h(R^2 r^2))$. By similar \triangle , $\frac{h}{r} = \frac{h_1 + h}{R}$, or $h = \frac{rh_1}{R-r}$. Simplifying, $V = \frac{1}{3}\pi h_1(r^2 + rR + R^2)$.
 - **b.** about 784.6 in.³
- **34. a.** about 47.1 m
 - **b.** about 176.7 m^2
 - **c.** about 389.6 m^3
- **35.** about 16.2 cm

36. about 8.8 cm