Answers for Lesson 2-5, pp. 112–115 Exercises

1. 20

- **2.** x = 25, y = 105 **3.** 30

4. 60, 60

5. 75, 105

6. 120, 120

- **7. a.** 90
 - **b.** 90
 - c. Subst.
 - **d.** $m \angle 3$
- **8.** Answers may vary. Sample: A thm. is proven and a post. is assumed to be true.
- **9.** Answers may vary. Sample: scissors
- **10.** If $m \angle 1 + m \angle 2 = 180$, and $m \angle 2 + m \angle 3 = 180$, then $m \angle 1 + m \angle 2 = m \angle 2 + m \angle 3$ by subst. Subtr. $m \angle 2$ from each side $m \angle 1 = m \angle 3$ or $\angle 1 \cong \angle 3$.
- 11. The two acute \(\Lambda \) have measure 72. The two obtuse \(\Lambda \) have measure 108.
- **12.** 15; 25, 25
- **13.** x = 14, y = 15; 50, 50, 130
- **14.** a. rt. ∠

15. C

- **b.** $m \angle Y$
- **16.** $\angle DOB \cong \angle AOC$ and $\angle DOA \cong \angle BOC$ since they are vert. 🖄.
- **17.** $\angle EIG \cong \angle FIH$ since all rt. \triangle are \cong ; $\angle EIF \cong \angle HIG$ since they are compl. of the same \angle .
- **18.** $\angle KPJ \cong \angle MPJ$ since they are marked \cong ; $\angle KPL \cong \angle MPL$ since they are suppl. of $\cong \angle$ s.
- **19.** Answers may vary. Sample: (-5, -1)

Answers for Lesson 2-5, pp. 112–115 Exercises (cont.)

- **20. a.** Answers may vary. B can be any point on the positive y-axis. Sample: (0, 5)
 - **b.** Answers may vary. Sample: (3, -1)
- **21**. a. *V*
 - **b.** 180
 - c. Division
 - d. right
- **22.** Suppl. of \cong \angle s are \cong .
- **23.** $m \angle A = 60, m \angle B = 30$ **24.** $m \angle A = 30, m \angle B = 60$
- **25.** $m \angle A = 120, m \angle B = 60$ **26.** $m \angle A = 90, m \angle B = 90$
- **27.** By the def. of suppl. $\angle s$, $m \angle 1 + m \angle 2 = 180$ and $m \angle 3 + m \angle 4 = 180$. By the Subst. Prop. $m \angle 1 + m \angle 2 = m \angle 3 + m \angle 4$. It is given that $\angle 2 \cong \angle 4$, so $m \angle 2 = m \angle 4$. Then by the Subtr. Prop. of $= m \angle 1 = m \angle 3$, or $\angle 1 \cong \angle 3$.
- **28.** By the def. of compl. $\angle s$, $m \angle 1 + m \angle 2 = 90$ and $m \angle 3 + m \angle 4 = 90$. By the Subst. Prop. of =, $m \angle 1 + m \angle 2 = m \angle 3 + m \angle 4$. It is given that $\angle 2 \cong \angle 4$, so $m \angle 2 = m \angle 4$. Then by the Subtr. Prop. of =, $m \angle 1 = m \angle 3$ or $\angle 1 \cong \angle 3$.
- **29. a–b.** It is the bisector of both angles.
 - Sample: perpendicular; bisectors of two adjacent supplementary angles form two adjacent angles whose measures add to $\frac{1}{2}(180)$, or 90.
- **30.** x = 30, y = 90; 60, 120, 60
- **31.** x = 35, y = 70, 70, 110, 70
- **32.** x = 50, y = 20; 80, 100, 80

© Pearson Education, Inc., publishing as Pearson Prentice Hall. All rights reserved.