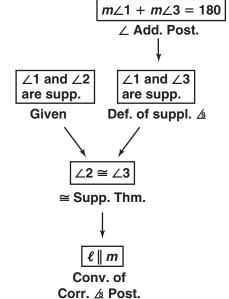
Answers for Lesson 3-2, pp. 137–139 Exercises

- **1.** $\overrightarrow{BE} \parallel \overrightarrow{CG}$; Conv. of Corr. \triangle Post.
- **2.** $\overline{CA} \parallel \overline{HR}$; Conv. of Corr. \triangle Post.
- 3. $\overline{JO} \parallel \overline{LM}$; if two lines and a transversal form same-side int. \triangle that are suppl., then the lines are \parallel .
- **4.** $\overline{PQ} \parallel \overline{ST}$; Conv. of Alt. Int. \triangle Thm.
- **5.** 30
- **6.** 50
- **7.** 59
- **8.** 31
- **9.** The corr. \triangle are \cong , so the lines are \parallel by the Conv. of Corr. \triangle Post.
- **10.** $a \parallel b$; if two lines and a transversal form same-side int. \triangle that are suppl., then the lines are \parallel .
- **11.** $a \parallel b$; if two lines and a transversal form same-side int. \triangle that are suppl., then the lines are \parallel .
- **12.** $a \parallel b$; if two lines and a transversal form same side ext. \triangle that are suppl., then the two lines are \parallel .
- **13.** none
- **14.** $a \parallel b$; Conv. of Corr. \angle s Post.
- **15.** none
- **16.** $a \parallel b$; Conv. of Alt. Int. \triangle Thm.
- **17.** $\ell \parallel m$; Conv. of Corr. \angle s Post.
- **18.** $a \parallel b$; if two lines and a transversal form alt. ext. \angle s that are congruent, then the two lines are \parallel .
- **19.** $a \parallel b$; Conv. of Corr. \angle s Post.
- **20.** none
- **21.** $\ell \parallel m$; Conv. of Alt. Int. \triangle Thm.

© Pearson Education, Inc., publishing as Pearson Prentice Hall. All rights reserved.

Geometry

- **22.** a. $\angle 1$
 - **b.** ∠1
 - c. /2
 - **d**. /3
 - e. Conv. of Corr. \(\lambda \)
- **23.** The corr. \triangle he draws are \cong .
- **24.** 5


25. 20

- **26.** C
- **27.** $m \angle 1 + m \angle 3 = 180$ (Given). $m \angle 1 + m \angle 2 = 180$ (\angle Add. Post.). $m \angle 1 + m \angle 3 = m \angle 1 + m \angle 2$ (Substitution). $m \angle 3 =$ $m \angle 2$ (Subt. Prop. of =). $\ell \parallel n$ (Conv. of Corres. \triangle Post.)
- **28.** $10; m \angle 1 = m \angle 2 = 70$ **29.** $5; m \angle 1 = m \angle 2 = 50$

- **30.** $2.5; m \angle 1 = m \angle 2 = 30$ **31.** $1.25; m \angle 1 = m \angle 2 = 10$
- **32.** The corr. \angle s are \cong , and the oars are \parallel by the Conv. of Corr. \angle s Post.
- **33.** Answers may vary. Sample: $\angle 3 \cong \angle 9$; $j \parallel k$ by Conv. of the Alt. Int. & Thm.
- **34.** Answers may vary. Sample: $\angle 3 \cong \angle 9$; $j \parallel k$ by Conv. of the Alt. Int. \triangle Thm. and $\ell \parallel m$ by Conv. of Same-Side Int. \triangle Thm.
- **35.** Answers may vary. Sample: $\angle 3 \cong \angle 11$; $\ell \parallel m$ by Conv. of the Alt. Int. \triangle Thm. and $j \parallel k$ by Conv. of Corr. \triangle Post.
- **36.** Answers may vary. Sample: $\angle 3$ and $\angle 12$ are suppl.; $j \parallel k$ by the Conv. of Corr. & Post.
- 37. Vert. & Thm. and Conv. of Corr. & Post.

Answers for Lesson 3-2, pp. 137-139 Exercises (cont.)

- **38.** 1. $\ell \parallel n$
 - $2. \angle 8 \cong \angle 4$
 - 3. ∠12 ≅ ∠8
 - $4. \angle 12 \cong \angle 4$
 - 5. $j \parallel k$
- **39.** 1. $j \parallel k$
 - 2. $m \angle 9 + m \angle 4 = 180$
 - 3. $m \angle 8 + m \angle 9 = 180$
 - 4. $m \angle 9 + m \angle 4 = m \angle 8 + m \angle 9$
 - 5. $m \angle 4 = m \angle 8$
 - 6. $\ell \parallel n$
- 40.

- 1. Given
- 2. Corres. \(\Lambda \) Post.
- 3. Given
- 4. Trans. Prop. of \cong
- 5. Conv. of Corres. \(\triangle \) Post.
- 1. Given
- 2. Same-Side Int. & Thm.
- 3. Given
- 4. Trans. Prop. of =
- 5. Subt. Prop. of =
- 6. Conv. of Corres. 🗷 Post.

- **41.** $\overline{PL} \parallel \overline{NA}$ and $\overline{PN} \parallel \overline{LA}$ by Conv. of Same-Side Int. \triangle Thm.
- **42.** $\overline{PL} \parallel \overline{NA}$ by Conv. of Same-Side Int. \angle s Thm.

Answers for Lesson 3-2, pp. 137–139 Exercises (cont.)

- **43.** none
- **44.** $\overline{PN} \parallel \overline{LA}$ by Conv. of Same-Side Int. \angle s Thm.
- **45. a.** Answers may vary. Sample:

- **b.** Given: $a \parallel b$ with transversal e, c bisects $\angle AOB, d$ bisects $\angle AXZ$.
- **c.** Prove: $c \parallel d$
- **d.** To prove that $c \parallel d$, show that $\angle 1 \cong \angle 3$. $\angle 1 \cong \angle 3$ if $\angle AOB \cong \angle OXZ$. $\angle AOB \cong \angle OXZ$ by the Corr. $\angle S$ Post.
- **e. 1.** $a \parallel b$ (Given)
 - **2.** $\angle AOB \cong \angle AXZ$ (Corr. \triangle Post.)
 - **3.** $m \angle AOB = m \angle AXZ$ (Def. of $\cong \angle S$)
 - **4.** $m \angle AOB = m \angle 1 + m \angle 2; m \angle AXZ = m \angle 3 + m \angle 4$ (\angle Add. Post.)
 - **5.** \hat{c} bisects $\angle AOB$; \hat{d} bisects $\angle AXZ$. (Given)
 - **6.** $m \angle 1 = m \angle 2$; $m \angle 3 = m \angle 4$ (Def. of \angle bisector)
 - 7. $m \angle 1 + m \angle 2 = m \angle 3 + m \angle 4$ (Trans. Prop. of \cong)
 - 8. $m \angle 1 + m \angle 1 = m \angle 3 + m \angle 3$ (Subst.)
 - **9.** $2m \angle 1 = 2m \angle 3$ (Add. Prop.)
 - **10.** $m \angle 1 = m \angle 3$ (Div. Prop.)
 - **11.** $c \parallel d$ (Conv. of Corr. \angle s Post.)

© Pearson Education, Inc., publishing as Pearson Prentice Hall. All rights reserved.

Geometry

Chapter 3