- 1. 30 2. 83.1
- **3.** 90 **4.** x = 70; y = 110; z = 30
- 5. x = 80; y = 80
- 7. right, scalene
- 8. acute, equiangular, equilateral
- 9. obtuse, isosceles
- 10.
- **11.** Not possible; a right  $\triangle$  will always have one longest side opp. the right  $\angle$ .

**6.** 60







**b.**  $\angle 1$  and  $\angle 3$  for  $\angle 5$  $\angle 1$  and  $\angle 2$  for  $\angle 6$  $\angle 1$  and  $\angle 2$  for  $\angle 8$ 

**c.** They are  $\cong$  vert.  $\angle$ s.

60

| <b>17. a.</b> 2                                                                                                                                                                                       | <b>18.</b> 123                                                                                                                                                       |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| <b>b.</b> 6                                                                                                                                                                                           |                                                                                                                                                                      |  |
| <b>19.</b> 115.5                                                                                                                                                                                      |                                                                                                                                                                      |  |
| <b>20.</b> $m \angle 3 = 92; m \angle 4 = 88$                                                                                                                                                         | <b>21.</b> $x = 147, y = 33$                                                                                                                                         |  |
| <b>22.</b> <i>a</i> = 162, <i>b</i> = 18                                                                                                                                                              | <b>23.</b> $x = 7; 55, 35, 90;$ right                                                                                                                                |  |
| <b>24.</b> $x = 37; 37, 65, 78;$ acute                                                                                                                                                                |                                                                                                                                                                      |  |
| <b>25.</b> $x = 38, y = 36, z = 90; \triangle ABD: 36, 90, 54; right; \triangle BCD: 90, 52, 38; right; \triangle ABC: 74, 52, 54; acute$                                                             |                                                                                                                                                                      |  |
|                                                                                                                                                                                                       | <b>6.</b> $a = 67, b = 58, c = 125, d = 23, e = 90; \triangle FGH: 58, 67, 55;$<br>acute; $\triangle FEH: 125, 32, 23$ ; obtuse; $\triangle EFG: 67, 23, 90$ ; right |  |
| <b>27.</b> 60; 180 $\div$ 3 = 60                                                                                                                                                                      |                                                                                                                                                                      |  |
| <ul> <li>28. Yes, an equilateral △ is isosc. because if three sides of a △ are ≈, then at least two sides are ≈. No, the third side of an isosc. △ does not need to be ≈ to the other two.</li> </ul> |                                                                                                                                                                      |  |
| 29. eight Right isosceles                                                                                                                                                                             | <b>30.</b> A                                                                                                                                                         |  |

Pearson Education, Inc., publishing as Pearson Prentice Hall. All rights reserved.

29. eight Right isosceles
Obtuse scalene
Acute isosceles
Acute isosceles
Right scalene
31. 30 and 60
32. a. 40, 60, 80
b. acute

Geometry

. .

- **33.** Check students' work. Answers may vary. Sample: The two ext.  $\triangle$  formed at vertex *A* are vert.  $\triangle$  and thus have the same measure.
- 34. By the definition of right angle, m∠C = 90. By the Triangle Angle-Sum Theorem, m∠A + m∠B + m∠C = 180. Subtracting 90 from each side gives m∠A + m∠B = 90, so A and B are complementary by the definition of comp. angles.
- **35.**  $m \angle 1 + m \angle 4 = 180$  by the  $\angle$  Add. Postulate.  $m \angle 2 + m \angle 3 + m \angle 4 = 180$  by the  $\triangle \angle$ -Sum Theorem.  $m \angle 1 + m \angle 4 = m \angle 2 + m \angle 3 + m \angle 4$  by the Trans. Property of Equality.  $m \angle 1 = m \angle 2 + m \angle 3$  by the Subtr. Property of Equality.
- **36.** 132; since the third  $\angle$  is 68, the largest ext.  $\angle$  is 180 48 = 132.
- **37.** Check students' work.
- **38** a. 81
  - **b.** 45, 63, 72
  - **c.** acute
- **39. a.–b.** There are no such triangles.
  - **c.** isosceles triangle.
- **40.** 115
- 41. Answers may vary. Sample: The measure of the ext. ∠ is = to the sum of the measures of the two remote int. ▲. Since these ▲ are ≅, the ▲ formed by the bisector of the ext. ∠ are ≅ to each of them. Therefore, the bisector is || to the included side of the remote int. ▲ by the Conv. of the Alt Int. ▲ Thm.