1. 30
2. 90
3. 83.1
4. $x=70 ; y=110 ; z=30$
5. $x=80 ; y=80$
6. 60
7. right, scalene
8. acute, equiangular, equilateral
9. obtuse, isosceles
10.

11. Not possible; a right \triangle will always have one longest side opp. the right \angle.
12.

14.

16. a. $\angle 5, \angle 6, \angle 8$
b. $\angle 1$ and $\angle 3$ for $\angle 5$
$\angle 1$ and $\angle 2$ for $\angle 6$
$\angle 1$ and $\angle 2$ for $\angle 8$
c. They are \cong vert. \llcorner.
13.

15.

17.
a. 2
b. 6
19. 115.5
20. $m \angle 3=92 ; m \angle 4=88$
21. $x=147, y=33$
22. $a=162, b=18$
23. $x=7$; 55, 35, 90 ; right
24. $x=37 ; 37,65,78$; acute
25. $x=38, y=36, z=90 ; \triangle A B D: 36,90,54$; right; $\triangle B C D: 90,52,38$; right; $\triangle A B C: 74,52,54$; acute
26. $a=67, b=58, c=125, d=23, e=90 ; \triangle F G H: 58,67,55$; acute; $\triangle F E H: 125,32,23$; obtuse; $\triangle E F G: 67,23,90$; right
27. $60 ; 180 \div 3=60$
28. Yes, an equilateral \triangle is isosc. because if three sides of a \triangle are \cong, then at least two sides are \cong. No, the third side of an isosc. \triangle does not need to be \cong to the other two.
29. eight

Right isosceles
30. A
31. 30 and 60
32. a. $40,60,80$
b. acute
33. Check students' work. Answers may vary. Sample: The two ext. $\angle s$ formed at vertex A are vert. $\angle s$ and thus have the same measure.
34. By the definition of right angle, $m \angle C=90$. By the Triangle Angle-Sum Theorem, $m \angle A+m \angle B+$ $m \angle C=180$.
Subtracting 90 from each side gives $m \angle A+m \angle B=90$, so A and B are complementary by the definition of comp. angles.
35. $m \angle 1+m \angle 4=180$ by the \angle Add. Postulate.
$m \angle 2+m \angle 3+m \angle 4=180$ by the $\triangle \angle$-Sum Theorem.
$m \angle 1+m \angle 4=m \angle 2+m \angle 3+m \angle 4$ by the Trans. Property
 of Equality.
$m \angle 1=m \angle 2+m \angle 3$ by the Subtr. Property of Equality.
36. 132 ; since the third \angle is 68 , the largest ext. \angle is $180-48=132$.
37. Check students' work.

38 a. 81
b. $45,63,72$
c. acute
39. a.-b. There are no such triangles.
c. isosceles triangle.
40. 115
41. Answers may vary. Sample: The measure of the ext. \angle is $=$ to the sum of the measures of the two remote int. \llcorner. Since these $\angle s$ are \cong, the $\angle s$ formed by the bisector of the ext. \angle are \cong to each of them. Therefore, the bisector is $\|$ to the included side of the remote int. $\llcorner s$ by the Conv. of the Alt Int. \&s Thm.

