Answers for Lesson 3-5, pp. 161–163 Exercises 1. yes - 2. No; it has no sides. - **3.** No; it is not a plane figure. - **4.** No; two sides intersect between endpoints. - **5.** MWBFX; sides: \overline{MW} , \overline{WB} , \overline{BF} , \overline{FX} , \overline{XM} ; \triangle : $\triangle M$, $\triangle W$, $\triangle B$, $\triangle F$, $\triangle X$ - **6.** KCLP; sides: \overline{KC} , \overline{CL} , \overline{LP} , \overline{PK} ; $\angle S$: $\angle K$, $\angle C$, $\angle L$, $\angle P$ - **7.** HEPTAGN; sides: \overline{HE} , \overline{EP} , \overline{PT} , \overline{TA} , \overline{AG} , \overline{GN} , \overline{NH} ; $\angle S: \angle H$, $\angle E$, $\angle P$, $\angle T$, $\angle A$, $\angle G$, $\angle N$ - 8. pentagon; convex - 9. decagon; concave - **10.** pentagon; concave - **11.** 1080 - **12.** 1800 - **13.** 1440 - **14.** 3240 - **15.** 180,000 - **16.** 102 - **17.** 103 - **18.** 145 - **19.** 37 - **20.** 60, 60, 120, 120 - **21.** 113, 119 - **22.** 108; 72 - **23.** 150; 30 - **24.** 160; 20 - **25.** 176.4; 3.6 - **26.** 45, 45, 90 28. 29. 30. 31. **27**. - **32.** 3 - **33.** 8 - **34.** 13 - **35.** 18 - **36.** C - **37.** octagon; $m \angle 1 = 135$; $m \angle 2 = 45$ ## Answers for Lesson 3-5, pp. 161–163 Exercises (cont.) - **38.** If you solve $\frac{(n-2)180}{n} = 130$, you get n = 7.2. This number is not an integer. - **39.** 20-80-80; 50-50-80 - **40.** 108; 5 - **41.** 144; 10 - **42.** 162; 20 - **43.** 150; 12 - **44.** $180 x; \frac{360}{x}$ - **45.** $\frac{4}{5}$ - **46.** a. $n \cdot 180$ - **b.** (n-2)180 - **c.** 180n 180(n 2) = 360 - **d.** Polygon Ext. ∠-Sum Thm. - **47.** y = 103; z = 70; quad. - **48.** $w = 72, x = 59, y = 49, z = 121; \triangle$ - **49.** x = 36, 2x = 72, 3x = 108, 4x = 144; quad. - 50-53. Answers may vary. Samples are given - **50.** / 51. **52**. - 53. - **54.** Yes; the sum of the measures of \triangle at the int. point is 360. The sum of the measures of all the \triangle is 180n. 180n 360 = (n 2)180 - **55.** Answers may vary. Sample: The figure is a convex equilateral quad. The sum of its △s is 2 · 180 or 360. - **56.** octagon ## Answers for Lesson 3-5, pp. 161–163 Exercises (cont.) **57. a.** (20, 162), (40, 171), (60, 174), (80, 175.5), (100, 176.4), (120, 177), (140, 177.4), (160, 177.75), (180, 178), (200, 178.2) - **c.** It is very close to 180. - **d.** No, two sides cannot be collinear. **58.** a. $$[180(n-2)] \div n = \frac{180n-360}{n} = 180 - \frac{360}{n}$$. - **b.** As *n* gets larger, the size of the angles get closer to 180. The more sides it has, the closer the polygon is to a circle. - **59.** 36 - 60-63. Answers may vary. Samples are given. 60. **61.** Not possible; opp. sides 62. **63.** Not possible; opp. and adj. sides would overlap. would overlap.