Answers for Lesson 3-5, pp. 161–163 Exercises

1. yes

- 2. No; it has no sides.
- **3.** No; it is not a plane figure.
- **4.** No; two sides intersect between endpoints.
- **5.** MWBFX; sides: \overline{MW} , \overline{WB} , \overline{BF} , \overline{FX} , \overline{XM} ; \triangle : $\triangle M$, $\triangle W$, $\triangle B$, $\triangle F$, $\triangle X$
- **6.** KCLP; sides: \overline{KC} , \overline{CL} , \overline{LP} , \overline{PK} ; $\angle S$: $\angle K$, $\angle C$, $\angle L$, $\angle P$
- **7.** HEPTAGN; sides: \overline{HE} , \overline{EP} , \overline{PT} , \overline{TA} , \overline{AG} , \overline{GN} , \overline{NH} ; $\angle S: \angle H$, $\angle E$, $\angle P$, $\angle T$, $\angle A$, $\angle G$, $\angle N$
- 8. pentagon; convex

- 9. decagon; concave
- **10.** pentagon; concave
- **11.** 1080

- **12.** 1800
- **13.** 1440
- **14.** 3240
- **15.** 180,000

- **16.** 102
- **17.** 103
- **18.** 145
- **19.** 37

- **20.** 60, 60, 120, 120
- **21.** 113, 119
- **22.** 108; 72
- **23.** 150; 30

- **24.** 160; 20
- **25.** 176.4; 3.6
- **26.** 45, 45, 90

28.

29.

30.

31.

27.

- **32.** 3
- **33.** 8
- **34.** 13
- **35.** 18

- **36.** C
- **37.** octagon; $m \angle 1 = 135$; $m \angle 2 = 45$

Answers for Lesson 3-5, pp. 161–163 Exercises (cont.)

- **38.** If you solve $\frac{(n-2)180}{n} = 130$, you get n = 7.2. This number is not an integer.
- **39.** 20-80-80; 50-50-80
- **40.** 108; 5
- **41.** 144; 10
- **42.** 162; 20

- **43.** 150; 12
- **44.** $180 x; \frac{360}{x}$
 - **45.** $\frac{4}{5}$

- **46.** a. $n \cdot 180$
 - **b.** (n-2)180
 - **c.** 180n 180(n 2) = 360
 - **d.** Polygon Ext. ∠-Sum Thm.
- **47.** y = 103; z = 70; quad.
- **48.** $w = 72, x = 59, y = 49, z = 121; \triangle$
- **49.** x = 36, 2x = 72, 3x = 108, 4x = 144; quad.
- 50-53. Answers may vary. Samples are given
- **50.** /

51.

52.

- 53.
- **54.** Yes; the sum of the measures of \triangle at the int. point is 360. The sum of the measures of all the \triangle is 180n. 180n 360 = (n 2)180
- **55.** Answers may vary. Sample: The figure is a convex equilateral quad. The sum of its △s is 2 · 180 or 360.
- **56.** octagon

Answers for Lesson 3-5, pp. 161–163 Exercises (cont.)

57. a. (20, 162), (40, 171), (60, 174), (80, 175.5), (100, 176.4), (120, 177), (140, 177.4), (160, 177.75), (180, 178), (200, 178.2)

- **c.** It is very close to 180.
- **d.** No, two sides cannot be collinear.

58. a.
$$[180(n-2)] \div n = \frac{180n-360}{n} = 180 - \frac{360}{n}$$
.

- **b.** As *n* gets larger, the size of the angles get closer to 180. The more sides it has, the closer the polygon is to a circle.
- **59.** 36
- 60-63. Answers may vary. Samples are given.

60.

61. Not possible; opp. sides

62.

63. Not possible; opp. and adj. sides would overlap.

would overlap.