Answers for Lesson 3-6, pp. 169–170 Exercises

2.

6.

8.

9.

13.
$$y = -2x + 4$$

14.
$$y = -2x + 4$$

Answers for Lesson 3-6, pp. 169-170 Exercises (cont.)

15.
$$y = -\frac{1}{3}x + 1$$

16.
$$y = \frac{3}{2}x - \frac{1}{4}$$

17.
$$y - 3 = 2(x - 2)$$

19.
$$y - 5 = -1(x + 3)$$

21.
$$y - 1 = \frac{1}{2}(x - 6)$$

18.
$$y + 1 = 3(x - 4)$$

20.
$$y + 6 = -4(x + 2)$$

22.
$$y - 4 = 1(x - 0)$$
 or $y - 4 = x$

23-28. Equations may vary from the pt. chosen. Samples are given.

23.
$$y - 5 = \frac{3}{5}(x - 0)$$

25.
$$y - 6 = 1(x - 2)$$

27.
$$y - 0 = \frac{1}{2}(x + 1)$$

29. a.
$$y = 7$$

b.
$$x = 4$$

31. a.
$$y = -1$$

b.
$$x = 0$$

24.
$$y - 2 = -\frac{1}{2}(x - 6)$$

26.
$$y - 4 = 1(x + 4)$$

28.
$$y - 10 = \frac{2}{3}(x - 8)$$

30. a.
$$y = -2$$

b.
$$x = 3$$

32. a.
$$y = 4$$

b.
$$x = 6$$

© Pearson Education, Inc., publishing as Pearson Prentice Hall. All rights reserved.

- **38.** a. 0.05
 - **b.** the cost per min
 - **c.** 4.95
 - **d.** the initial charge for a call
- **39.** No; a line with no slope is a vertical line. 0 slope is a horizontal line.
- **40.** a. m = 0; it is a horizontal line.
 - **b.** y = 0
- **41. a.** Undefined; it is a vertical line.
 - **b.** x = 0
- 42-44. Answers may vary. Samples are given.
- **42.** The eq. is in standard form; change to slope-intercept form, because it is easy to graph the eq. from that form.
- **43.** The eq. is in slope-int. form; use slope-int. form, because the eq. is already in that form.
- **44.** The eq. is in point-slope form; use point-slope form, because the eq. is already in that form.

45.

The slopes are the same, and the *y*-intercepts are different.

46.

The slopes are all different, and the *y*-intercepts are the same.

47. Check students' work.

48.	0	y					1		
	4	-		``	3	ı,	5	7	7 X
	-1				X	=	6		
	2								
	3				(6,	_	4)		
	_	v	=		4				
	3						1		

- **52.** $\frac{3}{10} = 0.3, \frac{1}{12} = 0.08\overline{3}; \frac{3}{10} > \frac{1}{12}$; it is possible only if the ramp zigzags.
- **53.** The *y*-intercepts are the same, and the lines have the same steepness. One line rises from left to right while the other falls from left to right.
- **54.** Answers may vary. Sample: x = 5, y 6 = 2(x 5), y = x + 1

55.
$$(2,0), (0,4); m = \frac{0-4}{2-0} = \frac{-4}{2} = -2$$

 $y-0 = -2(x-2), 2x + y = 4 \text{ or } y = -2x + 4$

56. a.
$$y - 0 = \frac{5}{2}(x - 0)$$
 or $y = \frac{5}{2}x$
b. $y - 5 = -\frac{5}{2}(x - 2)$ or $y = -\frac{5}{2}x + 10$

- **c.** The abs. value of the slopes is the same, but one slope is pos. and the other is neg. One y-int. is at (0,0) and the other is at (0,10).
- **57.** Yes; the slope of \overline{AB} = the slope of \overline{BC} .
- **58.** No; the slope of $\overline{DE} \neq$ the slope of \overline{EF} .
- **59.** Yes; the slope of \overline{GH} = the slope of \overline{HI} .

- **60.** Yes; the slope of \overline{JK} = the slope of \overline{KL} .
- **61.** y 2 = 3(x + 2); 3x y = -8
- **62.** $y 5 = \frac{1}{2}(x 5); x 2y = -5$
- **63.** $y 6 = \frac{2}{3}(x 2); 2x 3y = -14$

© Pearson Education, Inc., publishing as Pearson Prentice Hall. All rights reserved.

Geometry Chapter 3 70