Answers for Lesson 3-7, pp. 177-179 Exercises

- 1. Yes; both slopes $= -\frac{1}{2}$.
- **2.** No; the slope of $\ell_1 = \frac{1}{3}$ and the slope of $\ell_2 = \frac{1}{2}$.
- **3.** No; the slope of $\ell_1 = \frac{3}{2}$, and the slope of $\ell_2 = 2$.
- **4.** Yes; both slopes = 4.
- **5.** Yes; both slopes = 0.
- **6.** Yes; the lines both have a slope of 2 but different *y*-intercepts.
- 7. Yes; the lines both have a slope of $\frac{3}{4}$ but different y-intercepts.
- **8.** Yes; the lines both have a slope of -1 but different y-intercepts.
- **9.** No; one slope = 7 and the other slope = -7.
- **10.** No; one slope $= -\frac{3}{4}$ and the other slope = -3.
- 11. Yes; the lines both have a slope of $-\frac{2}{5}$ but different y-intercepts.
- **12.** y 3 = -2(x 0) or y 3 = -2x
- **13.** $y 0 = \frac{1}{3}(x 6)$ or $y = \frac{1}{3}(x 6)$
- **14.** $y 4 = \frac{1}{2}(x + 2)$
- **15.** $y + 2 = -\frac{3}{2}(x 6)$
- **16.** Yes; the slope of $\ell_1 = -\frac{1}{2}$, and the slope of $\ell_2 = 2$; $-\frac{1}{2} \cdot 2 = -1$.
- **17.** Yes; the slope of $\ell_1 = -\frac{3}{2}$, and the slope of $\ell_2 = \frac{2}{3}$; $-\frac{3}{2} \cdot \frac{2}{3} = -1$.
- **18.** No; the slope of $\ell_1 = -1$, and the slope of $\ell_2 = \frac{4}{5}$; $-1 \cdot \frac{4}{5} \neq -1$.
- **19.** Yes; the slope of $\ell_1 = -1$, and the slope of $\ell_2 = 1$; $-1 \cdot 1 = -1$.

Answers for Lesson 3-7, pp. 177–179 Exercises (cont.)

20-23. Answers may vary. Samples are given.

20.
$$y - 6 = -\frac{3}{2}(x - 6)$$

21.
$$y = -2(x - 4)$$

22.
$$y - 4 = \frac{1}{2}(x - 4)$$

23.
$$y = \frac{4}{5}x$$

24.
$$y = -\frac{3}{2}x$$

25. Yes;
$$1 \cdot (-1) = -1$$
.

26. Yes; one is vertical and the other is horizontal.

27. No;
$$\frac{2}{7} \cdot \left(-\frac{7}{4}\right) \neq -1$$
.

28. A

29. slope of
$$\overline{AB} = \text{slope of } \overline{CD} = \frac{2}{3}; \overline{AB} \parallel \overline{CD}$$
 slope of $\overline{BC} = \text{slope of } \overline{AD} = -3; \overline{BC} \parallel \overline{AD}$

30. slope of
$$\overline{AB} = \text{slope of } \overline{CD} = -\frac{3}{4}; \overline{AB} \parallel \overline{CD}$$
 slope of $\overline{BC} = \text{slope of } \overline{AD} = 1; \overline{BC} \parallel \overline{AD}$

31. slope of
$$\overline{AB} = \frac{1}{2}$$
; slope of $\overline{CD} = \frac{1}{4}$; $\overline{AB} \not\parallel \overline{CD}$ slope of $\overline{BC} = -1$; slope of $\overline{AD} = -\frac{1}{2}$; $\overline{BC} \not\parallel \overline{AD}$

32. slope of
$$\overline{AB} = \text{slope of } \overline{CD} = 0; \overline{AB} \parallel \overline{CD}$$
 slope of $\overline{BC} = 3$ and slope of $\overline{AD} = \frac{3}{2}; \overline{BC} \not \parallel \overline{AD}$

33. Answers may vary. Sample:
$$y = \frac{4}{5}x + 5$$
, $y = -\frac{5}{4}x + 5$

34. No; two \parallel lines with the same *y*-intercept are the same line.

35.
$$\overline{RS}$$
 and \overline{VU} are horizontal with slope = 0; $\overline{RS} \parallel \overline{VU}$; slope of \overline{RW} = slope of \overline{UT} = 1; $\overline{RW} \parallel \overline{UT}$; slope of \overline{WV} = slope of \overline{ST} = -1; $\overline{WV} \parallel \overline{ST}$

36. No; because no pairs of slopes have a product of -1.

37. The lines will have the same slope.

- **38.** When lines are \perp , the product of their slopes is -1. So, two lines \perp to the same line must have the same slope.
- **39.** a. $y + 20 = \frac{3}{4}(x 35)$
 - **b.** because you are given a point and can quickly find the slope
- **40.** |

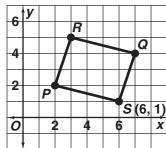
41. \perp

42. neither

43. ⊥

- **44.** \perp
- **45.** \overline{AC} : $d = \sqrt{(7-9)^2 + (11-1)^2} = \sqrt{104}$ \overline{BD} : $d = \sqrt{(13-3)^2 + (7-5)^2} = \sqrt{104}$ $\overline{AC} \cong \overline{BD}$
- **46.** slope of $\overline{AC} = -5$; slope of $\overline{BD} = \frac{1}{5}$; since $-5 \cdot \frac{1}{5} = -1$, $\overline{AC} \perp \overline{BD}$; midpoint $\overline{AC} = (8, 6)$; midpoint $\overline{BD} = (8, 6)$; since the midpoints are the same, the diagonals bisect each other.
- **47. a-b.** Answers may vary.

Sample:



c. The other possible locations for S are (-2,3) and (8,7).

48.
$$y - 5 = \frac{1}{3}(x - 4)$$