1. Yes; both slopes $=-\frac{1}{2}$.
2. No; the slope of $\ell_{1}=\frac{1}{3}$ and the slope of $\ell_{2}=\frac{1}{2}$.
3. No; the slope of $\ell_{1}=\frac{3}{2}$, and the slope of $\ell_{2}=2$.
4. Yes; both slopes $=4$.
5. Yes; both slopes $=0$.
6. Yes; the lines both have a slope of 2 but different y-intercepts.
7. Yes; the lines both have a slope of $\frac{3}{4}$ but different y-intercepts.
8. Yes; the lines both have a slope of -1 but different y-intercepts.
9. No; one slope $=7$ and the other slope $=-7$.
10. No; one slope $=-\frac{3}{4}$ and the other slope $=-3$.
11. Yes; the lines both have a slope of $-\frac{2}{5}$ but different y-intercepts.
12. $y-3=-2(x-0)$ or $y-3=-2 x$
13. $y-0=\frac{1}{3}(x-6)$ or $y=\frac{1}{3}(x-6)$
14. $y-4=\frac{1}{2}(x+2)$
15. $y+2=-\frac{3}{2}(x-6)$
16. Yes; the slope of $\ell_{1}=-\frac{1}{2}$, and the slope of $\ell_{2}=2$; $-\frac{1}{2} \cdot 2=-1$.
17. Yes; the slope of $\ell_{1}=-\frac{3}{2}$, and the slope of $\ell_{2}=\frac{2}{3}$; $-\frac{3}{2} \cdot \frac{2}{3}=-1$.
18. No; the slope of $\ell_{1}=-1$, and the slope of $\ell_{2}=\frac{4}{5}$; $-1 \cdot \frac{4}{5} \neq-1$.
19. Yes; the slope of $\ell_{1}=-1$, and the slope of $\ell_{2}=1$; $-1 \cdot 1=-1$.

20-23. Answers may vary. Samples are given.
20. $y-6=-\frac{3}{2}(x-6)$
21. $y=-2(x-4)$
22. $y-4=\frac{1}{2}(x-4)$
23. $y=\frac{4}{5} x$
24. $y=-\frac{3}{2} x$
25. Yes; $1 \cdot(-1)=-1$.
26. Yes; one is vertical and the other is horizontal.
27. No $; \frac{2}{7} \cdot\left(-\frac{7}{4}\right) \neq-1$.
28. A
29. slope of $\overline{A B}=$ slope of $\overline{C D}=\frac{2}{3} ; \overline{A B} \| \overline{C D}$
slope of $\overline{B C}=$ slope of $\overline{A D}=-3 ; \overline{B C} \| \overline{A D}$
30. slope of $\overline{A B}=$ slope of $\overline{C D}=-\frac{3}{4} ; \overline{A B} \| \overline{C D}$ slope of $\overline{B C}=$ slope of $\overline{A D}=1 ; \overline{B C} \| \overline{A D}$
31. slope of $\overline{A B}=\frac{1}{2}$; slope of $\overline{C D}=\frac{1}{4} ; \overline{A B} \nVdash \overline{C D}$ slope of $\overline{B C}=-1$; slope of $\overline{A D}=-\frac{1}{2} ; \overline{B C} \nVdash \overline{A D}$
32. slope of $\overline{A B}=$ slope of $\overline{C D}=0 ; \overline{A B} \| \overline{C D}$ slope of $\overline{B C}=3$ and slope of $\overline{A D}=\frac{3}{2} ; \overline{B C} \nVdash \overline{A D}$
33. Answers may vary. Sample: $y=\frac{4}{5} x+5, y=-\frac{5}{4} x+5$
34. No; two $\|$ lines with the same y-intercept are the same line.
35. $\overline{R S}$ and $\overline{V U}$ are horizontal with slope $=0 ; \overline{R S} \| \overline{V U}$; slope of $\overline{R W}=$ slope of $\overline{U T}=1 ; \overline{R W} \| \overline{U T}$; slope of $\overline{W V}=$ slope of $\overline{S T}=-1 ; \overline{W V} \| \overline{S T}$
36. No; because no pairs of slopes have a product of -1 .
37. The lines will have the same slope.
38. When lines are \perp, the product of their slopes is -1 . So, two lines \perp to the same line must have the same slope.
39. a. $y+20=\frac{3}{4}(x-35)$
b. because you are given a point and can quickly find the slope
40. ||
41. \perp
42. neither
43. \perp
44. \perp
45. $\overline{A C}: d=\sqrt{(7-9)^{2}+(11-1)^{2}}=\sqrt{104}$
$\overline{B D}: d=\sqrt{(13-3)^{2}+(7-5)^{2}}=\sqrt{104}$

$$
\overline{A C} \cong \overline{B D}
$$

46. slope of $\overline{A C}=-5$; slope of $\overline{B D}=\frac{1}{5}$; since $-5 \cdot \frac{1}{5}=-1$, $\overline{A C} \perp \overline{B D}$; midpoint $\overline{A C}=(8,6) ;$ midpoint $\overline{B D}=(8,6)$; since the midpoints are the same, the diagonals bisect each other.
47. a-b. Answers may vary. Sample:

c. The other possible locations for S are $(-2,3)$ and $(8,7)$.
48. $y-5=\frac{1}{3}(x-4)$
