1. a. Given
b. Reflexive
c. $\triangle J K M$
d. $\triangle L M K$
2. $\overline{I E} \cong \overline{G H}, \overline{E F} \cong \overline{H F}$: given. F is the midpoint of $\overline{G I}$; given. $\overline{I F} \cong \overline{F G}$ by the definition of midpoint. Therefore, $\triangle E F I \cong$ $\triangle H F G$ by SSS.
3. It is given that $\overline{W Z} \cong \overline{Z S} \cong \overline{S D} \cong \overline{D W} \cdot \overline{Z D} \cong \overline{Z D}$ by the Reflexive Property of Congruence. Therefore, $\triangle W Z D \cong$ $\triangle S D Z$ by SSS.
4. Yes; $\overline{O B} \cong \overline{O B}$ by Refl. Prop.; $\angle B O P \cong \angle B O R$ since all rt. $\angle \mathrm{s}$ are $\cong ; \overline{O P} \cong \overline{O R}$ (Given); the $\&$ are \cong by SAS.
5. Yes; $\overline{A C} \cong \overline{D B}$ (Given); $\overline{A E} \cong \overline{C E}$ and $\overline{B E} \cong \overline{D E}$ (Def. of midpt.); $\angle A E B \cong \angle C E D$ (vert. $\angle \mathrm{s}$ are \cong) $\triangle A E B \cong \triangle C E D$ by SAS .
6. No; either $\overline{P Q} \cong \overline{Q S}$ is needed for SSS , or $\angle T \cong \angle R$ for SAS.
7. Yes; since $\overline{A C} \cong \overline{A C}$ by the Refl. Prop., the © are \cong by SAS.
8. $\overline{L G} \cong \overline{M N}$
9. $\angle T \cong \angle V$ or $\overline{R S} \cong \overline{W U}$
10. $\overline{W V}, \overline{V U}$
11. $\angle W$
12. $\angle U, \angle V$
13. $\overline{W U}$
14. $\angle X$
15. $\overline{X Z}, \overline{Y Z}$
16. Yes; $\triangle A C B \cong \triangle E F D$ by SAS.
17. Yes; $\triangle P V Q \cong \triangle S T R$ by SSS.
18. $\angle A X N \cong \angle G X R$ (Vert. $\angle \mathrm{s}$ are \cong.), $\overline{A X} \cong \overline{G X}$ and $\overline{N X} \cong$ $\overline{R X}$ (def. of midpoint), so $\triangle A N X \cong \triangle G R X$ by SAS.
19. A
20. $\triangle A N G \cong \triangle R W T$; SAS

21. $\triangle K L J \cong \triangle M O N ;$ SSS

22. Not possible; need $\angle H \cong \angle P$ or $\overline{D Y} \cong \overline{T K}$.
23. $\triangle J E F \cong \triangle S V F$ or $\triangle J E F \cong \triangle S F V$; SSS
24. $\triangle B R T \cong \triangle B R S ;$ 25S $\triangle P Q R \cong \triangle N M O ;$ SAS
25. $G K$ bisects $\angle J G M$, so $\angle J G K \cong \angle M G K$ (def. of bisect.). $\overline{G J} \cong \overline{G M}$ (given), and $\overline{G K} \cong \overline{G K}$ (Reflexive Prop. of \cong). $\triangle G J K \cong \triangle G M K$ by SAS.
26. $\overline{A E}$ and $\overline{B D}$ bisect each other, so $\overline{A C} \cong \overline{C E}$ and $\overline{B C} \cong \overline{C D}$. $\angle A C B \cong \angle D C E$ because vert. $\angle \mathrm{s}$ are $\cong . \triangle A C B \cong \triangle E C D$ by SAS.
27. No; even though the \measuredangle are \cong, the sides may not be.
28. No; you would need $\angle H \cong \angle K$ or $\overline{G I} \cong \overline{J L}$.
29. yes; SAS
30.

32.

33. a-b. Answers may vary. Sample:
a. wallpaper designs; ironwork on a bridge; highway warning signs
b. \cong \& produce a well-balanced, symmetric appearance. In construction, \cong § enhance designs. Highway warning signs are more easily identified if they are \cong.
34. $\angle I S P \cong \angle P S O ; \triangle I S P \cong \triangle O S P$ by SAS.
35. $\overline{I P} \cong \overline{P O} ; \triangle I S P \cong \triangle O S P$ by SSS.
36. Yes; $\triangle A D B \cong \triangle C B D$ by SAS; $\angle A D B \cong \angle D B C$ because if $\|$ lines, then alt. int. \llcorner are \cong.
37. Yes; $\triangle A B C \cong \triangle C D A$ by SAS; $\angle D A C \cong \angle A C B$ because if $\|$ lines, then alt. int. \llcorner are \cong.
38. 1. $\overline{F G} \| \overline{K L}$ (Given)
2. $\angle G F K \cong \angle F K L$ (If $\|$ lines, then alt. int. $\angle s$ are \cong.)
3. $\overline{F G} \cong \overline{K L}$ (Given)
4. $\overline{F K} \cong \overline{F K}$ (Reflexive Prop. of \cong)
5. $\triangle F G K \cong \triangle K L F(S A S)$
39. $\overline{A M} \cong \overline{M B}$ because M is the midpt. of $\overline{A B} . \angle B \cong \angle A M C$ because all right \measuredangle are $\cong . \overline{C M} \cong \overline{D B}$ is given. $\triangle A M C \cong$ $\triangle M B D$ by SAS.
40. $H G=H K+K G$ and $K L=K G+G L$ by the Seg. Add. Post. Since $H K=G L$, use subst. twice to get $H G=G L+K G=$ $K L$. So $\overline{H G} \cong \overline{K L}$ and the © are \cong by SSS.
41. $\triangle M N O \cong \triangle O \underline{L M}$ by SAS. Therefore $\angle N M O \cong \angle L O M$ by def. of $\cong \S$, so $\overline{M N} \| \overline{L O}$ by the Conv. of the Alt. Int. $\angle \mathrm{s}$ Thm.

Answers for Lesson 4-2, pp. 208-211 Exercises (cont.)

42. Answers may vary. Sample:

43. a. No; the angles are not necessarily \cong.
b. No; sample explanation: the $\angle s$ can be changed without changing the side lengths.
c. Answers may vary. Sample: a diagonal
