- 1. a. Given
 - **b.** Reflexive
 - c. $\triangle JKM$
 - **d.** $\triangle LMK$
- **2.** $\overline{IE} \cong \overline{GH}, \overline{EF} \cong \overline{HF}$: given. *F* is the midpoint of \overline{GI} ; given. $\overline{IF} \cong \overline{FG}$ by the definition of midpoint. Therefore, $\triangle EFI \cong \triangle HFG$ by SSS.
- **3.** It is given that $\overline{WZ} \cong \overline{ZS} \cong \overline{SD} \cong \overline{DW}$. $\overline{ZD} \cong \overline{ZD}$ by the Reflexive Property of Congruence. Therefore, $\triangle WZD \cong \triangle SDZ$ by SSS.
- **4.** Yes; $OB \cong OB$ by Refl. Prop.; $\angle BOP \cong \angle BOR$ since all rt. \triangle are \cong ; $\overline{OP} \cong \overline{OR}$ (Given); the \triangle are \cong by SAS.
- 5. Yes; $\overline{AC} \cong \overline{DB}$ (Given); $\overline{AE} \cong \overline{CE}$ and $\overline{BE} \cong \overline{DE}$ (Def. of midpt.); $\angle AEB \cong \angle CED$ (vert. \measuredangle are \cong) $\triangle AEB \cong \triangle CED$ by SAS.
- 6. No; either $\overline{PQ} \cong \overline{QS}$ is needed for SSS, or $\angle T \cong \angle R$ for SAS.
- 7. Yes; since $\overline{AC} \cong \overline{AC}$ by the Refl. Prop., the \triangle are \cong by SAS.
- 8. $\overline{LG} \cong \overline{MN}$ 9. $\angle T \cong \angle V \text{ or } \overline{RS} \cong \overline{WU}$
- **10.** $\overline{WV}, \overline{VU}$ **11.** $\angle W$
- **12.** $\angle U, \angle V$ **13.** \overline{WU}
- 14. $\angle X$ 15. $\overline{XZ}, \overline{YZ}$
- **16.** Yes; $\triangle ACB \cong \triangle EFD$ by SAS.
- **17.** Yes; $\triangle PVQ \cong \triangle STR$ by SSS.

84

- **18.** $\angle AXN \cong \angle GXR$ (Vert. \measuredangle are \cong .), $\overline{AX} \cong \overline{GX}$ and $\overline{NX} \cong \overline{RX}$ (def. of midpoint), so $\triangle ANX \cong \triangle GRX$ by SAS.
- **19.** A
- **20.** $\triangle ANG \cong \triangle RWT$; SAS
- **21.** $\triangle KLJ \cong \triangle MON; SSS$
- **22.** Not possible; need $\angle H \cong \angle P$ or $\overline{DY} \cong \overline{TK}$.
- **23.** $\triangle JEF \cong \triangle SVF$ or $\triangle JEF \cong \triangle SFV$; SSS
- **24.** $\triangle BRT \cong \triangle BRS$; SSS **25.** $\triangle PQR \cong \triangle NMO$; SAS
- **26.** GK bisects $\angle JGM$, so $\angle JGK \cong \angle MGK$ (def. of bisect.). $\overline{GJ} \cong \overline{GM}$ (given), and $\overline{GK} \cong \overline{GK}$ (Reflexive Prop. of \cong). $\triangle GJK \cong \triangle GMK$ by SAS.
- **27.** \overline{AE} and \overline{BD} bisect each other, so $\overline{AC} \cong \overline{CE}$ and $\overline{BC} \cong \overline{CD}$. $\angle ACB \cong \angle DCE$ because vert. \measuredangle are \cong . $\triangle ACB \cong \triangle ECD$ by SAS.
- **28.** No; even though the \angle s are \cong , the sides may not be.
- **29.** No; you would need $\angle H \cong \angle K$ or $GI \cong JL$.
- **30.** yes; SAS
- 31.

85

- **33. a**-**b**. Answers may vary. Sample:
 - **a.** wallpaper designs; ironwork on a bridge; highway warning signs
 - b. ≅ ▲ produce a well-balanced, symmetric appearance. In construction, ≅ ▲ enhance designs. Highway warning signs are more easily identified if they are ≅.
- **34.** $\angle ISP \cong \angle PSO; \triangle ISP \cong \triangle OSP$ by SAS.
- **35.** $IP \cong PO; \triangle ISP \cong \triangle OSP$ by SSS.
- **36.** Yes; $\triangle ADB \cong \triangle CBD$ by SAS; $\angle ADB \cong \angle DBC$ because if \parallel lines, then alt. int. \measuredangle are \cong .
- **37.** Yes; $\triangle ABC \cong \triangle CDA$ by SAS; $\angle DAC \cong \angle ACB$ because if \parallel lines, then alt. int. \measuredangle are \cong .
- **38.** 1. $\overline{FG} \parallel \overline{KL}$ (Given)
 - **2.** $\angle GFK \cong \angle FKL$ (If \parallel lines, then alt. int. \triangle are \cong .)
 - **3.** $\overline{FG} \cong \overline{KL}$ (Given)
 - **4.** $\overline{FK} \cong \overline{FK}$ (Reflexive Prop. of \cong)
 - **5.** $\triangle FGK \cong \triangle KLF$ (SAS)
- **39.** $AM \cong MB$ because M is the midpt. of $AB. \angle B \cong \angle AMC$ because all right \triangle s are \cong . $\overline{CM} \cong \overline{DB}$ is given. $\triangle AMC \cong \triangle MBD$ by SAS.
- **40.** HG = HK + KG and KL = KG + GL by the Seg. Add. Post. Since HK = GL, use subst. twice to get HG = GL + KG = KL. So $\overline{HG} \cong \overline{KL}$ and the & are \cong by SSS.
- **41.** $\triangle MNO \cong \triangle OLM$ by SAS. Therefore $\angle NMO \cong \angle LOM$ by def. of $\cong \triangle$, so $\overline{MN} \parallel \overline{LO}$ by the Conv. of the Alt. Int. \triangle Thm.

.....

42. Answers may vary. Sample:

- **43.** a. No; the angles are not necessarily \cong .
 - **b.** No; sample explanation: the <u>is</u> can be changed without changing the side lengths.
 - c. Answers may vary. Sample: a diagonal