1. SAS; $\triangle K L J \cong \triangle O M N ; \angle K \cong \angle O ; \angle J \cong \angle N ; \overline{J K} \cong \overline{N O}$
2. $\triangle A B D \cong \triangle C B D$ by ASA because $\overline{B D} \cong \overline{B D}$ by Reflexive Prop. of $\cong ; \overline{A B} \cong \overline{C B}$ by СРСТС.
3. $\triangle M O E \cong \triangle R E O$ by SSS because $\overline{O E} \cong \overline{O E}$ by Reflexive Prop. of $\cong ; \angle M \cong \angle R$ by CPCTC.
4. a. SSS
b. CPCTC
5. The \otimes are \cong by SAS so the distance across the sinkhole is 26.5 yd by CPCTC.
6. $\angle \mathrm{SPT}=\angle O P T, \overline{S P} \cong \overline{O P}$ (Given), $\overline{P T} \cong \overline{P T}$ (Reflexive Prop.), $\triangle S P T \cong \triangle O P T$ (SAS), $\angle S=\angle O$ (CPCTC)
7. $\overline{Y T} \cong \overline{Y P}, \angle C \cong \angle R, \angle T \cong \angle P$ (Given), $\angle C Y T \cong \angle R Y P$ (If $2 \angle$ of a \triangle are \cong to $2 \angle s$ of another, the 3 rd $\angle s$ are \cong.), $\triangle C Y T \cong \triangle R Y P(A S A), \overline{C T} \cong \overline{R P}(\mathrm{CPCTC})$
8. $\angle P K L \cong \angle Q K L$ by def. of \angle bisect, and $\overline{K L} \cong \overline{K L}$ by Reflexive Prop. of \cong, so the \uparrow are \cong by SAS.
9. $\overline{K L} \cong \overline{K L}$ by Reflexive Prop. of $\cong ; \overline{P L} \cong \overline{L Q}$ by Def. of \perp bis.; $\angle K L P \cong \angle K L Q$ by Def. of \perp; the © are \cong by SAS.
10. $\angle K L P \cong \angle K L Q$ because all $\mathrm{rt} \stackrel{\mathrm{s}}{ }$ are $\cong ; \overline{K L} \cong \overline{K L}$ by Reflexive Prop. of \cong; and $\angle P K L \cong \angle Q K L$ by def. of bisect; the © are \cong by ASA.
11. $\angle Q P S \cong \angle R S P, \angle Q \cong \angle R$ (Given), $\angle Q S P \cong \angle R P S$ (If 2 $\angle s$ of a \triangle are \cong to $2 \angle s$ of another, the 3 rd $\angle \mathrm{s}$ are \cong.), $\overline{P S} \cong$ $\overline{P S}$ (Reflexive Prop.), $\triangle Q P S \cong \triangle R S P$ (ASA),$\overline{P Q} \cong \overline{S R}$ (CPCTC)
12. Yes; $\triangle A B D \cong \triangle C B D$ by SSS so $\angle A \cong \angle C$ by CPCTC.
13. a. $\overline{A P} \cong \overline{P B} ; \overline{A C} \cong \overline{B C}$
b. The diagram is constructed in such a way that the \mathbb{S} are \cong by SSS. $\angle C P A \cong \angle C P B$ by CPCTC. Since these \angle are \cong and suppl., they are right $\angle s$. Thus, $\overleftrightarrow{C P}$ is \perp to ℓ.
14. Explanations may vary. Sample: The error is in line 4. You cannot say $\overline{A D} \cong \overline{C D}$ by the definition of bisect. $\overline{B D}$ is given to be an angle bisector, not a segment bisector. Replace line 4 with:

$$
\text { 4. } \overline{B D} \cong \overline{B D}
$$

$$
4 . \cong \text { is reflexive }
$$

15. $\overline{B A} \cong \overline{B C}$ is given; $\overline{B D} \cong \overline{B D}$ by the Reflexive Prop. of \cong and since $\overline{B D}$ bisects $\angle A B C, \angle A B D \cong \angle C B D$ by def. of an \angle bisector; thus, $\triangle A B D \cong \triangle C B D$ by SAS; $\overline{A D} \cong \overline{D C}$ by CPCTC so $\overline{B D}$ bisects $\overline{A C}$ by def. of a bis.; $\angle A D B \cong \angle C D B$ by CPCTC and $\angle A D B$ and $\angle C D B$ are suppl.; thus, $\angle A D B$ and $\angle C D B$ are right $\angle \mathrm{s}$ and $\overline{B D} \perp \overline{A C}$ by def. of \perp.
16. Since ℓ bisects $\overline{A B}$ at $C, \overline{A C} \cong \overline{B C} \cdot \overline{P C} \cong \overline{P C}$ by the Reflexive Prop. and $\angle A C P \cong \angle B C P$ because they are rt. \angle. So $\triangle P C A \cong \triangle P C B$ by SAS and $P A=P B$ by CPCTC.
17. $\triangle A B X \cong \triangle A C X$ by SSS, so $\angle B A X \cong \angle C A X$ by CPCTC. Thus $\overrightarrow{A X}$ bisects $\angle B A C$ by the def. of \angle bisector.
18. Prove $\triangle A B E \cong \triangle C D F$ by SAS since $\overline{A E} \cong \overline{F C}$ by subtr.
19. Prove $\triangle K J M \cong \triangle Q P M$ by ASA since $\angle P \cong \angle J$ and $\angle K \cong \angle Q$ by alt. int. $\angle s$ are \cong.
20. 21. $\overline{P R}\|\overline{M G} ; \overline{M P}\| \overline{G R}$ (Given)
1. Draw $\overline{P G}$. (2 pts. determine a line.)
2. $\angle R P G \cong \angle P G M$ and $\angle R G P \cong \angle G P M$ (If $\|$ lines, then alt. int. $\angle \mathrm{s}$ are \cong.)
3. $\triangle P G M \cong \triangle G P R$ (ASA). A similar proof can be written if diagonal $\overline{R M}$ is drawn.
4. Since $\triangle P G M \cong \triangle G P R$ (or $\triangle P M R \cong \triangle G R M$), then $\overline{P R} \cong \overline{M G}$ and $\overline{M P} \cong \overline{G R}$ by СРСТС.
