- **1.** SAS; $\triangle KLJ \cong \triangle OMN$; $\angle K \cong \angle O$; $\angle J \cong \angle N$; $JK \cong NO$
- **2.** $\triangle ABD \cong \triangle CBD$ by ASA because $\overline{BD} \cong \overline{BD}$ by Reflexive Prop. of \cong ; $\overline{AB} \cong \overline{CB}$ by CPCTC.
- **3.** $\triangle MOE \cong \triangle REO$ by SSS because $\overline{OE} \cong \overline{OE}$ by Reflexive Prop. of \cong ; $\angle M \cong \angle R$ by CPCTC.
- **4.** a. SSS

b. CPCTC

- 5. The \triangle are \cong by SAS so the distance across the sinkhole is 26.5 yd by CPCTC.
- **6.** \angle SPT = $\angle OPT$, $\overline{SP} \cong \overline{OP}$ (Given), $\overline{PT} \cong \overline{PT}$ (Reflexive Prop.), $\triangle SPT \cong \triangle OPT$ (SAS), $\angle S = \angle O$ (CPCTC)
- 7. $\overline{YT} \cong \overline{YP}, \angle C \cong \angle R, \angle T \cong \angle P$ (Given), $\angle CYT \cong \angle RYP$ (If 2 \leq of a \triangle are \cong to 2 \leq of another, the 3rd \leq are \cong .), $\triangle CYT \cong \triangle RYP$ (ASA), $\overline{CT} \cong \overline{RP}$ (CPCTC)
- **8.** $\angle PKL \cong \angle QKL$ by def. of \angle bisect, and $\overline{KL} \cong \overline{KL}$ by Reflexive Prop. of \cong , so the \triangle are \cong by SAS.
- **9.** $\overline{KL} \cong \overline{KL}$ by Reflexive Prop. of \cong ; $\overline{PL} \cong \overline{LQ}$ by Def. of \perp bis.; $\angle KLP \cong \angle KLQ$ by Def. of \perp ; the \triangle are \cong by SAS.
- **10.** $\angle KLP \cong \angle KLQ$ because all rt \triangle s are \cong ; $KL \cong KL$ by Reflexive Prop. of \cong ; and $\angle PKL \cong \angle QKL$ by def. of bisect; the \triangle s are \cong by ASA.
- **11.** $\angle QPS \cong \angle RSP, \angle Q \cong \angle R$ (Given), $\angle QSP \cong \angle RPS$ (If 2 $\underline{\land}$ of a \triangle are \cong to 2 $\underline{\land}$ of another, the 3rd $\underline{\land}$ are \cong .), $\overline{PS} \cong \overline{PS}$ (Reflexive Prop.), $\triangle QPS \cong \triangle RSP$ (ASA), $\overline{PQ} \cong \overline{SR}$ (CPCTC)

92

- **12.** Yes; $\triangle ABD \cong \triangle CBD$ by SSS so $\angle A \cong \angle C$ by CPCTC.
- **13.** a. $\overline{AP} \cong \overline{PB}; \overline{AC} \cong \overline{BC}$
 - **b.** The diagram is constructed in such a way that the \triangle are \cong by SSS. $\angle CPA \cong \angle CPB$ by CPCTC. Since these \triangle are \cong and suppl., they are right \triangle . Thus, \overrightarrow{CP} is \perp to ℓ .
- 14. Explanations may vary. Sample: The error is in line 4. You cannot say $\overline{AD} \cong \overline{CD}$ by the definition of bisect. \overline{BD} is given to be an angle bisector, not a segment bisector. Replace line 4 with:
 - 4. $\overline{BD} \cong \overline{BD}$ 4. \cong is reflexive.
- **15.** $BA \cong BC$ is given; $BD \cong BD$ by the Reflexive Prop. of \cong and since \overline{BD} bisects $\angle ABC$, $\angle ABD \cong \angle CBD$ by def. of an \angle bisector; thus, $\triangle ABD \cong \triangle CBD$ by SAS; $\overline{AD} \cong \overline{DC}$ by CPCTC so \overline{BD} bisects \overline{AC} by def. of a bis.; $\angle ADB \cong \angle CDB$ by CPCTC and $\angle ADB$ and $\angle CDB$ are suppl.; thus, $\angle ADB$ and $\angle CDB$ are right \measuredangle and $\overline{BD} \perp \overline{AC}$ by def. of \perp .
- **16.** Since ℓ bisects \overline{AB} at $C, \overline{AC} \cong \overline{BC}, \overline{PC} \cong \overline{PC}$ by the Reflexive Prop. and $\angle ACP \cong \angle BCP$ because they are rt. $\angle s$. So $\triangle PCA \cong \triangle PCB$ by SAS and PA = PB by CPCTC.
- **17.** $\triangle ABX \cong \triangle ACX$ by SSS, so $\angle BAX \cong \angle CAX$ by CPCTC. Thus \overrightarrow{AX} bisects $\angle BAC$ by the def. of \angle bisector.
- **18.** Prove $\triangle ABE \cong \triangle CDF$ by SAS since $AE \cong FC$ by subtr.
- **19.** Prove $\triangle KJM \cong \triangle QPM$ by ASA since $\angle P \cong \angle J$ and $\angle K \cong \angle Q$ by alt. int. \measuredangle are \cong .

93

- **20.** 1. $\overline{PR} \parallel \overline{MG}; \overline{MP} \parallel \overline{GR}$ (Given)
 - **2.** Draw \overline{PG} . (2 pts. determine a line.)
 - **3.** $\angle RPG \cong \angle PGM$ and $\angle RGP \cong \angle GPM$ (If \parallel lines, then alt. int. $\angle s$ are \cong .)
 - **4.** $\triangle PGM \cong \triangle GPR$ (ASA). A similar proof can be written if diagonal \overline{RM} is drawn.
- **21.** Since $\triangle PGM \cong \triangle GPR$ (or $\triangle PMR \cong \triangle GRM$), then $\overline{PR} \cong \overline{MG}$ and $\overline{MP} \cong \overline{GR}$ by CPCTC.

94