Answers for Lesson 4-5, pp. 230–233 Exercises

1. \overline{VX} ; Conv. of the Isosc. \triangle Thm.

2. \overline{UW} ; Conv. of the Isosc. \triangle Thm.

3. \overline{VY} ; VT = VX (Ex. 1) and UT = YX (Ex. 2), so VU = VY by the Subtr. Prop. of =.

4. Answers may vary. Sample: $\angle VUY$; \triangle opp. \cong sides are \cong .

5.
$$x = 80; y = 40$$

6.
$$x = 40; y = 70$$

7.
$$x = 38; y = 4$$

11.
$$2\frac{1}{2}$$

15. a.
$$\overline{KM}$$

b.
$$\overline{KM}$$

c. By construction

d. Def. of segment bisector

e. Reflexive Prop. of \cong

f. SSS

g. CPCTC

- **16.** a. \overline{RS}
 - **b.** \overline{RS}

Statements	Reasons
1. \overline{RS} bisects $\angle PRQ$	1. Given
2. $\angle PRS \cong \angle QRS$	2. Def. of bisector
3. $\angle P \cong \angle Q$	3. Given
4. $\overline{RS} \cong \overline{RS}$	4. Reflexive Prop. of \cong
5. $\triangle PRS \cong \triangle QRS$	5. AAS
6. $\overline{PR} \cong \overline{QR}$	6. CPCTC

17. a.

30, 30, 120

b. 5; 30, 60, 90, 120, 150

- **18.** Answers may vary. Sample: Corollary to Thm. 4-3: Since $\overline{XY} \cong \overline{YZ}$, $\angle X \cong \angle Z$ by Thm. 4-3. $\overline{YZ} \cong \overline{ZX}$, so $\angle Y \cong \angle X$ by Thm. 4-3 also. By the Trans. Prop., $\angle Y \cong \angle Z$, so $\angle X \cong \angle Y \cong \angle Z$. Corollary to Thm. 4-4: Since $\angle X \cong \angle Z$, $\overline{XY} \cong \overline{YZ}$ by Thm. 4-4. $\angle Y \cong \angle X$, so $\overline{YZ} \cong \overline{ZX}$ by Thm. 4-4 also. By the Trans. Prop., $\overline{XY} \cong \overline{ZX}$, so $\overline{XY} \cong \overline{YZ} \cong \overline{ZX}$.
- **19.** C

20.
$$x = 60; y = 30$$

21.
$$x = 36; y = 36$$

Answers for Lesson 4-5, pp. 230–233 Exercises (cont.)

- **22.** x = 30; y = 120
- **23.** Two sides of a \triangle are \cong if and only if the \triangle opp. those sides are \cong .
- **24.** 80, 80, 20; 80, 50, 50
- **25.** a. isosc. **A**
 - **b.** 900 ft; 1100 ft
 - **c.** The tower is the \perp bis, of the base of each \triangle .
- **26.** No; the \triangle can be positioned in ways such that the base is not on the bottom.
- 27. 45; they are = and have sum 90.
- **28.** $\angle A \cong \angle D$ by the Isos. \triangle Thm. $\triangle ABE \cong \triangle DCE$ by SAS.
- **29.** $AC \cong CB$ and $\angle ACD \cong \angle DCB$ are given. $CD \cong CD$ by the Refl. Prop. of \cong , so $\triangle ACD \cong \triangle BCD$ by SAS. So $AD \cong DB$ by CPCTC, and CD bisects AB. Also $\angle ADC \cong \angle BDC$ by CPCTC, $m \angle ADC + m \angle BDC = 180$ by \angle Add. Post., so $m \angle ADC = m \angle BDC = 90$ by the Subst. Prop. So \overline{CD} is the \perp bis. of AB.
- **30.** m = 36; n = 27

31. m = 60; n = 30

- **32.** m = 20; n = 45
- **33.** (0,0), (4,4), (-4,0), (0,-4), (8,4), (4,8) **34.** (5,0); (0,5); (-5,5); (5,-5); (0,10); (10,0) (5, -5); (0, 10); (10, 0)
- **35.** (5, 3); (2, 6); (2, 9); (8, 3); (-1, 6); (5, 0)
- **36.** a. 25
 - **b.** 40; 40; 100
 - **c.** Obtuse isosc. \triangle ; 2 of the \angle s are \cong and one \angle is obtuse.

37. The \perp bis. of the base of an isosc. \triangle is the bis. of the vertex

 $\underline{\angle}$; given isosc. $\triangle ABC$ with \bot bis. \underline{CD} , $\angle ADC \cong \angle BDC$ and $\overline{AD} \cong \overline{DB}$ by def. of \bot bis. Since $\overline{CD} \cong \overline{CD}$ by Refl. Prop., $\triangle ACD \cong \triangle BCD$ by SAS. So $\angle ACD \cong \angle BCD$ by CPCTC, and \overline{CD} bisects $\angle ACB$. **38.** a. 5

b. \blacksquare

- **39.** $0 < \text{measure of base } \angle < 45$
- **40.** $45 < \text{measure of base } \angle < 90$