1. $\triangle A B C \cong \triangle D E F$ by HL. Both $\S$ are rt. §, $\overline{A C} \cong \overline{D F}$, and $\overline{C B} \cong \overline{F E}$.
2. $\triangle L M P \cong \triangle O M N$ by HL. Both $\triangle$ are rt. © because vert. $\angle \mathrm{s}$ are $\cong ; \overline{L P} \cong \overline{N O}$, and $\overline{L M} \cong \overline{O M}$.
3. $\angle T$ and $\angle Q$ are rt. $\angle ⺀$.
4. $\overline{R X} \cong \overline{R T}$ or $\overline{X V} \cong \overline{T V}$
5. a. $\cong \operatorname{suppl} . \angle \mathrm{s} \operatorname{are} \mathrm{rt}$. $\angle \mathrm{s}$
b. Def. of rt. $\triangle$
c. Given
d. Reflexive Prop. of $\cong$
e. HL
6. Given that $\angle D$ and $\angle B$ are right $\angle s, \triangle A D C$ and $\triangle C B A$ are right $\otimes$ by the def. of rt. $\triangle . \overline{A C} \cong \overline{A C}$ by the Reflexive Prop. of $\cong$, and $\overline{A D} \cong \overline{C B}$ is given. Therefore, $\triangle A D C \cong \triangle C B A$ by HL.
7. a. Given
b. Def. of $\perp$
c. $\triangle M L J$ and $\triangle K J L$ are rt. $\mathbb{\triangle}$.
d. Given
e. $\overline{L J} \cong \overline{L J}$
f. HL
8. Given that $\overline{H V} \perp \overline{G T}$ and $\overline{G H} \cong \overline{T V}$, then $\triangle I G H$ and $\triangle I T V$ are right $\triangle$ by the def. of rt. $\triangle$. It is given that $I$ is the midpoint of $\overline{H V}$, so $\overline{H I} \cong \overline{V I}$ by the def. of midpt. Therefore, $\triangle I G H \cong \triangle I T V$ by the HL Thm.
9. HL; each rt. $\triangle$ has a $\cong$ hyp. and side.
10. $x=3 ; y=2$
11. $x=-1 ; y=3$
12. whether the $7-y d$ side is the hyp. or a leg
13. It is given that $\overline{R S} \cong \overline{T U}, \overline{R S} \perp \overline{S T}, \overline{T U} \perp \overline{U V}$, and that $T$ is the midpoint of $\overline{R V} . \triangle R S T$ and $\triangle T U V$ are both right triangles by the definition of a right triangle. $\overline{R T} \cong \overline{T V}$ by the definition of midpoint. Therefore, $\triangle R S T \cong \triangle T U V$ by HL.
14. 15. $\overline{J M} \cong \overline{W P}$ (given)
1. $\overline{J P} \| \overline{M W}$ (given)
2. $\overline{J P} \perp \overline{P M}$ (given)
3. $\triangle J P M$ and $\triangle P M W$ are rt. $\triangleq$ (def. of rt. $\triangle$ )
4. $\overline{P M} \cong \overline{P M}$ (Reflex. Prop. of $\cong$ )
5. $\triangle J P M \cong \triangle P M W(\mathrm{HL})$
6. $\overline{P S} \cong \overline{P T}$ so $\angle S \cong \angle T$ by the Isosc. $\triangle$ Thm.
$\angle P R S \cong \angle P R T . \triangle P R S \cong \triangle P R T$ by AAS.
7. 


17.

18.

19.

20. 1. $\overline{E B} \cong \overline{D B} ; \angle A$ and $\angle C$ are rt. $\angle$. (Given)
2. $\triangle B E A$ and $\triangle B D C$ are rt. ©. (Def. of rt. $\triangle$ )
3. $B$ is the midpt. of $\overline{A C}$. (Given)
4. $\overline{A B} \cong \overline{B C}$ (Def. of midpt.)
5. $\triangle B E A \cong \triangle B D C$ (HL)
21. 1. $\overline{L O}$ bisects $\angle M L N, \overline{O M} \perp \overline{L M}, \overline{O N} \perp \overline{L N}$, (Given)
2. $\angle M$ and $\angle N$ are rt. $\triangle$ (Def. of $\perp$ )
3. $\angle M L O \cong \angle N L O$ (Def. of $\angle$ bis.)
4. $\angle M \cong \angle N$ (All rt. $₫$ are $\cong$.)
5. $\overline{L O} \cong \overline{L O}$ (Reflexive Prop. of $\cong$ )
6. $\triangle L M O \cong \triangle L N O$ (AAS)
22. Answers may vary. Sample: Measure 2 sides of the $\Delta$ formed by the amp. and the platform's corner. Since the $\mathbb{A}$ will be $\cong$ by HL or SAS, the $₫$ are the same.
23. a.

|  |  |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  | 2 |

b. slope of $\overline{D G}=-1$; slope of $\overline{G F}=-1$; slope of $\overline{G E}=1$
c. $\angle E G D$ and $\angle E G F$ are rt. $\angle \mathrm{s}$.
© Pearson Education, Inc., publishing as Pearson Prentice Hall. All rights reserved.
d. $D E=\sqrt{26} ; F E=\sqrt{26}$
e. $\triangle E G D \cong \triangle E G F$ by HL. Both $₫$ are rt. $\otimes$, $\overline{D E} \cong \overline{F E}$, and $\overline{E G} \cong \overline{E G}$.
24. An HA Thm. is the same as AAS with AAS corr. to the rt. $\angle$, an acute $\angle$, and the hyp.
25. Since $\overline{B E} \perp \overline{E A}$ and $\overline{B E} \perp \overline{E C}, \triangle A E B$ and $\triangle C E B$ are both rt . ©. $\overline{A B} \cong \overline{B C}$ because $\triangle A B C$ is equilateral, and $\overline{B E} \cong \overline{B E} . \triangle A E B \cong \triangle C E B$ by HL.
26. No; $\overline{A B} \cong \overline{C B}$ because $\triangle A E B \cong \triangle C E B$, but $\overline{A C}$ doesn't have to be $\cong$ to $\overline{A B}$ or to $\overline{C B}$.

