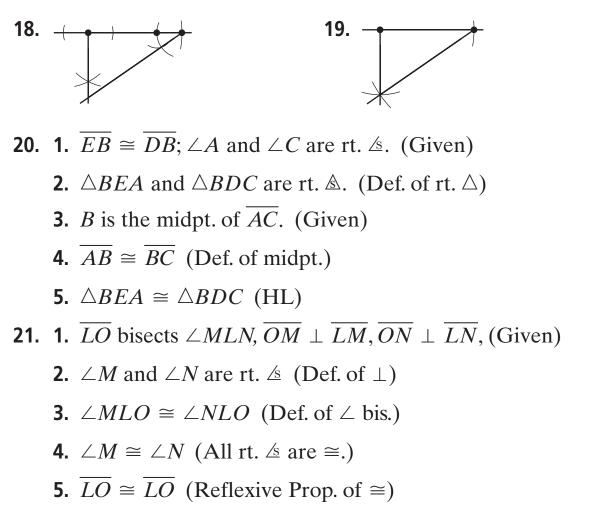
- **1.** $\triangle ABC \cong \triangle DEF$ by HL. Both & are rt. &, $\overline{AC} \cong \overline{DF}$, and $\overline{CB} \cong \overline{FE}$.
- **2.** $\triangle LMP \cong \triangle OMN$ by HL. Both & are rt. & because vert. & are \cong ; $\overline{LP} \cong \overline{NO}$, and $\overline{LM} \cong \overline{OM}$.
- **3.** $\angle T$ and $\angle Q$ are rt. \angle s.
- **4.** $\overline{RX} \cong \overline{RT}$ or $\overline{XV} \cong \overline{TV}$
- **5. a.** \cong suppl. \angle s are rt. \angle s
 - **b.** Def. of rt. \triangle
 - **c.** Given
 - **d.** Reflexive Prop. of \cong
 - e. HL
- 6. Given that $\angle D$ and $\angle B$ are right $\underline{\land}$, $\triangle ADC$ and $\triangle CBA$ are right $\underline{\land}$ by the def. of rt. \triangle . $\overline{AC} \cong \overline{AC}$ by the Reflexive Prop. of \cong , and $\overline{AD} \cong \overline{CB}$ is given. Therefore, $\triangle ADC \cong \triangle CBA$ by HL.
- 7. a. Given
 - **b.** Def. of \perp
 - **c.** $\triangle MLJ$ and $\triangle KJL$ are rt. \triangle .
 - **d.** Given
 - e. $\overline{LJ} \cong \overline{LJ}$
 - f. HL

99

- 8. Given that $\overline{HV} \perp \overline{GT}$ and $\overline{GH} \cong \overline{TV}$, then $\triangle IGH$ and $\triangle ITV$ are right \triangleq by the def. of rt. \triangle . It is given that *I* is the midpoint of \overline{HV} , so $\overline{HI} \cong \overline{VI}$ by the def. of midpt. Therefore, $\triangle IGH \cong \triangle ITV$ by the HL Thm.
- **9.** HL; each rt. \triangle has a \cong hyp. and side.
- **10.** x = 3; y = 2
- **11.** x = -1; y = 3
- **12.** whether the 7-yd side is the hyp. or a leg
- **13.** It is given that $\overline{RS} \cong \overline{TU}$, $\overline{RS} \perp \overline{ST}$, $\overline{TU} \perp \overline{UV}$, and that *T* is the midpoint of \overline{RV} . $\triangle RST$ and $\triangle TUV$ are both right triangles by the definition of a right triangle. $\overline{RT} \cong \overline{TV}$ by the definition of midpoint. Therefore, $\triangle RST \cong \triangle TUV$ by HL.

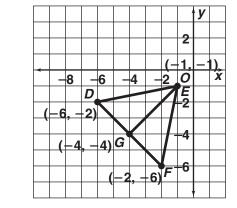
14. 1.
$$JM \cong WP$$
 (given)

- 2. $\overline{JP} \parallel \overline{MW}$ (given)
- 3. $\overline{JP} \perp \overline{PM}$ (given)
- 4. $\triangle JPM$ and $\triangle PMW$ are rt. & (def. of rt. \triangle)
- 5. $\overline{PM} \cong \overline{PM}$ (Reflex. Prop. of \cong)
- 6. $\triangle JPM \cong \triangle PMW$ (HL)
- **15.** $PS \cong PT$ so $\angle S \cong \angle T$ by the Isosc. \triangle Thm. $\angle PRS \cong \angle PRT$. $\triangle PRS \cong \triangle PRT$ by AAS.



- **6.** $\triangle LMO \cong \triangle LNO$ (AAS)
- 22. Answers may vary. Sample: Measure 2 sides of the △ formed by the amp. and the platform's corner. Since the ▲ will be ≈ by HL or SAS, the △ are the same.

23. a.



- **b.** slope of $\overline{DG} = -1$; slope of $\overline{GF} = -1$; slope of $\overline{GE} = 1$
- **c.** $\angle EGD$ and $\angle EGF$ are rt. $\angle s$.

d.
$$DE = \sqrt{26}; FE = \sqrt{26}$$

- e. $\triangle EGD \cong \triangle EGF$ by HL. Both & are rt. &, $\overline{DE} \cong \overline{FE}$, and $\overline{EG} \cong \overline{EG}$.
- **24.** An HA Thm. is the same as AAS with AAS corr. to the rt. \angle , an acute \angle , and the hyp.
- **25.** Since $\overline{BE} \perp \overline{EA}$ and $\overline{BE} \perp \overline{EC}$, $\triangle AEB$ and $\triangle CEB$ are both rt. \triangle . $\overline{AB} \cong \overline{BC}$ because $\triangle ABC$ is equilateral, and $\overline{BE} \cong \overline{BE}$. $\triangle AEB \cong \triangle CEB$ by HL.
- **26.** No; $\overline{AB} \cong \overline{CB}$ because $\triangle AEB \cong \triangle CEB$, but \overline{AC} doesn't have to be \cong to \overline{AB} or to \overline{CB} .