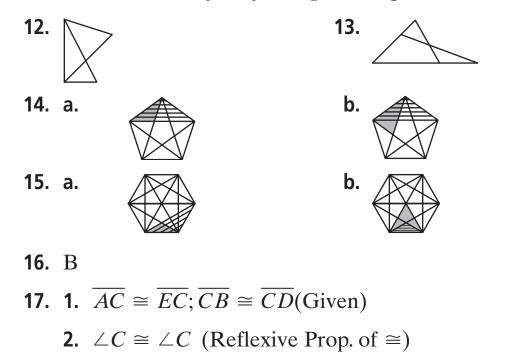


e. CPCTC

8. Plan: Two pairs of sides are \cong . The third sides are the same segment. Use SSS.


Proof: It is given that $\overline{RS} \cong \overline{UT}$ and $\overline{RT} \cong \overline{US}$. $\overline{ST} \cong \overline{ST}$ by the Reflex. Prop. of $\cong . \triangle RST \cong \triangle UTS$ by SSS.

9. Plan: Two sides and two angles are \cong . The other included sides are the same segment. Use SAS.

Proof: It is given that $\overline{QD} \cong \overline{UA}$ and $\angle QDA \cong \angle UAD$. $\overline{DA} \cong \overline{DA}$ by the Reflex. Prop. of $\cong \triangle QDA \cong \triangle UAD$ by SAS.

10. $\triangle QET \cong \triangle QEU$ by SAS if $\overline{QT} \cong \overline{QU}$. \overline{QT} and \overline{QU} are corr. parts of $\triangle QTB$ and $\triangle QUB$ which are \cong by ASA.

- **11.** $\triangle ADC \cong \triangle EDG$ by ASA if $\angle A \cong \angle E$. $\angle A$ and $\angle E$ are corr. parts in $\triangle ADB$ and $\triangle EDF$, which are \cong by SAS.
- 12–15. Answers may vary. Samples are given.

- **3.** $\triangle ACD \cong \triangle ECB$ (SAS)
- **4.** $\angle A \cong \angle E$ (CPCTC)
- **18.** $PQ \cong RQ$ and $\angle PQT \cong \angle RQT$ by Def. of \bot bisector. $\overline{QT} \cong \overline{QT}$ so $\triangle PQT \cong \triangle RQT$ by SAS. $\angle P \cong \angle R$ by CPCTC. \overline{QT} bisects $\angle VQS$ so $\angle VQT \cong \angle SQT$ and $\angle PQT$ and $\angle RQT$ are both rt. $\angle S$. So $\angle VQP \cong \angle SQR$ since they are compl. of $\cong \angle S. \triangle PQV \cong \triangle RQS$ by ASA so $\overline{QV} \cong \overline{QS}$ by CPCTC.
- **19.** $m \angle 1 = 56; m \angle 2 = 56; m \angle 3 = 34; m \angle 4 = 90; m \angle 5 = 22; m \angle 6 = 34; m \angle 7 = 34; m \angle 8 = 68; m \angle 9 = 112$
- **20.** $\triangle ABC \cong \triangle FCG; ASA$

Geometry

21. $\overline{TD} \cong \overline{RO}$ if $\triangle TDI \cong \triangle ROE$ by AAS. $\angle TID \cong \angle REO$ if $\triangle TEI \cong \triangle RIE$. $\triangle TEI \cong \triangle RIE$ by SSS.

22. $\overline{AE} \cong \overline{DE}$ if $\triangle AEB \cong \triangle DEC$ by AAS. $\overline{AB} \cong \overline{DC}$ and $\angle A \cong \angle D$ since they are corr. parts of $\triangle ABC$ and $\triangle DCB$, which are \cong by HL.

23. a.
$$\overline{AD} \cong \overline{BC}; \overline{AB} \cong \overline{DC}; \overline{AE} \cong \overline{EC}; \overline{DE} \cong \overline{EB}$$

b. Use $\overline{DB} \cong \overline{DB}$ (refl.) and alt. int. $\underline{\bigtriangleup}$ to show $\triangle ADB \cong \triangle CBD$ (ASA). $\overline{AB} \cong \overline{DC}$ and $\overline{AD} \cong \overline{BC}$ (CPCTC). $\triangle AEB \cong \triangle CED$ (ASA) and $\triangle AED \cong$ $\triangle CEB$ (ASA). Then $\overline{AE} \cong \overline{EC}$ and $\overline{DE} \cong \overline{EB}$ (CPCTC).

24.
$$\triangle ACE \cong \triangle BCD$$
 by ASA; $AC \cong BC, \angle A \cong \angle B$ (Given)
 $\angle C \cong \angle C$ (Reflexive Prop. of \cong) $\triangle ACE \cong \triangle BCD$ (ASA)

25. $\triangle WYX \cong \triangle ZXY$ by HL; $\overline{WY} \perp \overline{YX}, \overline{ZX} \perp \overline{YX}, \overline{WX} \cong \overline{ZY}$ (Given) $\angle WYX$ and $\angle ZXY$ are rt. \measuredangle (Def. of \perp) $\overline{XY} \cong \overline{XY}$ (Reflexive Prop. of \cong) $\triangle WYX \cong \triangle ZXY$ (HL)