1. $\angle M$
2. $\overline{D F}$
3. $\overline{X Y}$
4.

6

7. a. Given
b. Reflexive Prop. of \cong
c. Given
d. AAS
e. СРСТС
8. Plan: Two pairs of sides are \cong. The third sides are the same segment. Use SSS.
Proof: It is given that $\overline{R S} \cong \overline{U T}$ and $\overline{R T} \cong \overline{U S} . \overline{S T} \cong \overline{S T}$ by the Reflex. Prop. of $\cong \triangle R S T \cong \triangle U T S$ by SSS.
9. Plan: Two sides and two angles are \cong. The other included sides are the same segment. Use SAS.

Proof: It is given that $\overline{Q D} \cong \overline{U A}$ and $\angle Q D A \cong \angle U A D$. $\overline{D A} \cong \overline{D A}$ by the Reflex. Prop. of $\cong . \triangle Q D A \cong \triangle U A D$ by SAS.
10. $\triangle Q E T \cong \triangle Q E U$ by SAS if $\overline{Q T} \cong \overline{Q U} . \overline{Q T}$ and $\overline{Q U}$ are corr. parts of $\triangle Q T B$ and $\triangle Q U B$ which are \cong by ASA.

Answers for Lesson 4-7, pp. 243-245 Exercises (cont.)

11. $\triangle A D C \cong \triangle E D G$ by ASA if $\angle A \cong \angle E . \angle A$ and $\angle E$ are corr. parts in $\triangle A D B$ and $\triangle E D F$, which are \cong by SAS.

12-15. Answers may vary. Samples are given.
12.

13.

14. a.

b.

15. a.

b.

16. B
17. 1. $\overline{A C} \cong \overline{E C} ; \overline{C B} \cong \overline{C D}$ (Given)
2. $\angle C \cong \angle C$ (Reflexive Prop. of \cong)
3. $\triangle A C D \cong \triangle E C B$ (SAS)
4. $\angle A \cong \angle E$ (CPCTC)
18. $\overline{P Q} \cong \overline{R Q}$ and $\angle P Q T \cong \angle R Q T$ by Def. of \perp bisector. $\overline{Q T} \cong \overline{Q T}$ so $\triangle P Q T \cong \triangle R Q T$ by SAS. $\angle P \cong \angle R$ by CPCTC. $\overline{Q T}$ bisects $\angle V Q S$ so $\angle V Q T \cong \angle S Q T$ and $\angle P Q T$ and $\angle R Q T$ are both rt . \angle. So $\angle V Q P \cong \angle S Q R$ since they are compl. of $\cong \angle \Delta . \triangle P Q V \cong \triangle R Q S$ by ASA so $\overline{Q V} \cong \overline{Q S}$ by СРСТС.
19. $m \angle 1=56 ; m \angle 2=56 ; m \angle 3=34 ; m \angle 4=90 ; m \angle 5=22$; $m \angle 6=34 ; m \angle 7=34 ; m \angle 8=68 ; m \angle 9=112$
20. $\triangle A B C \cong \triangle F C G$; ASA
21. $\overline{T D} \cong \overline{R O}$ if $\triangle T D I \cong \triangle R O E$ by AAS. $\angle T I D \cong \angle R E O$ if $\triangle T E I \cong \triangle R I E . \triangle T E I \cong \triangle R I E$ by SSS.
22. $\overline{A E} \cong \overline{D E}$ if $\triangle A E B \cong \triangle D E C$ by AAS. $\overline{A B} \cong \overline{D C}$ and $\angle A \cong \angle D$ since they are corr. parts of $\triangle A B C$ and $\triangle D C B$, which are \cong by HL.
23. a. $\overline{A D} \cong \overline{B C} ; \overline{A B} \cong \overline{D C} ; \overline{A E} \cong \overline{E C} ; \overline{D E} \cong \overline{E B}$
b. Use $\overline{D B} \cong \overline{D B}$ (refl.) and alt. int. Is to show
$\triangle A D B \cong \triangle C B D(\mathrm{ASA}) . \overline{A B} \cong \overline{D C}$ and $\overline{A D} \cong \overline{B C}$ (CPCTC). $\triangle A E B \cong \triangle C E D$ (ASA) and $\triangle A E D \cong$ $\triangle C E B$ (ASA). Then $\overline{A E} \cong \overline{E C}$ and $\overline{D E} \cong \overline{E B}$ (СРСТС).
24. $\triangle A C E \cong \triangle B C D$ by ASA; $\overline{A C} \cong \overline{B C}, \angle A \cong \angle B$ (Given) $\angle C \cong \angle C$ (Reflexive Prop. of $\cong) \triangle A C E \cong \triangle B C D$ (ASA)
25. $\triangle W Y X \cong \triangle Z X Y$ by HL; $\overline{W Y} \perp \overline{Y X}, \overline{Z X} \perp \overline{Y X}, \overline{W X} \cong \overline{Z Y}$ (Given) $\angle W Y X$ and $\angle Z X Y$ are rt. \angle s (Def. of \perp) $\overline{X Y} \cong \overline{X Y}$ (Reflexive Prop. of $\cong) ~ \triangle W Y X \cong \triangle Z X Y$ (HL)

