3. 18

4. 8

5. The set of points equidistant from H and S is the \bot bis. of \overline{HS} .

6. x = 12; JK = 17; JM = 17

1. \overline{AC} is the \perp bis. of \overline{BD} .

7. y = 3; ST = 15; TU = 15

8. 27; 27

- **9.** \overrightarrow{HL} is the \angle bis. of $\angle KHF$ because a point on \overrightarrow{HL} is equidistant from \overrightarrow{HK} and \overrightarrow{HF} .
- **10.** 9
- **11.** 54; 54

12. 5

13. 10

14. 10

- **15.** Isosceles; it has $2 \cong$ sides.
- **16.** equidistant; RT = RZ
- 17. A point is on the \perp bis. of a segment if and only if it is equidistant from the endpts. of the segment.

18. 12

19. 4

20. 4

21. 16

22. 5

23. 10

24. 7

25. 14

- **26.** isosceles; CS = CT and CT = CY by the \angle Bis. Thm.
- 27. Answers may vary. Sample: The student needs to know that \overline{QS} bisects \overline{PR} .
- **28.** No; A is not equidistant from the sides of $\angle X$.
- **29.** Yes; AX bis. $\angle TXR$.
- **30.** Yes; A is equidistant from the sides of $\angle X$.

Answers for Lesson 5-2, pp. 267–270 Exercises (cont.)

- **31.** the pitcher's plate
- 32. a.

- **b.** The \angle bisectors intersect at the same point.
- c. Check students' work.
- 33. a.

- **b.** The \perp bisectors intersect at the same point.
- **c.** Check students' work.
- 34-39. Answers may vary. Samples are given.

34.
$$C(0,2), D(1,2); AC = BC = 2, AD = BD = \sqrt{5}$$

35.
$$C(3,2), D(3,0); AC = BC = 3, AD = BD = \sqrt{13}$$

36.
$$C(3,0), D(0,0); AC = BC = 3, AD = BD = 3\sqrt{2}$$

37.
$$C(0,0), D(1,1); AC = BC = 3, AD = BD = \sqrt{5}$$

38.
$$C(2,2), D(4,3); AC = BC = \sqrt{5}, AD = BD = \sqrt{10}$$

39.
$$C(\frac{5}{2}, \frac{5}{2}), D(5, 3); AC = BC = \frac{\sqrt{26}}{2}, AD = BD = \sqrt{13}$$

Answers for Lesson 5-2, pp. 267–270 Exercises (cont.)

- **40.** $\overline{AC} \cong \overline{BC}$ by definition of bisector. $\overline{CD} \perp \overline{AB}$, so $\angle DCA$ and $\angle DCB$ are right \triangle . Therefore, $\angle DCA \cong \angle DCB$ because all rt. \triangle are \cong . $\overline{DC} \cong \overline{DC}$ by the Reflexive Property of Congruence. Therefore, $\triangle CDA \cong \triangle CDB$ by Side-Angle-Side. $\overline{DA} \cong \overline{DB}$ because CPCTC, so $\overline{DA} = \overline{DB}$.
- **41.** $\triangle ABP$ and $\triangle ABQ$ are right triangles with a common leg and congruent hypotenuses. Thus, $\triangle BAP \cong \triangle BAQ$ by the HL Theorem. $PB \cong BQ$ using CPCTC, so AB bisects PQ by the definition of bisector. Hence, AB is the perpendicular bisector of PO.
- **42.** a. $\ell: y = -\frac{3}{4}x + \frac{25}{2}; m: x = 10$
 - **b.** (10, 5)
 - c. CA = CB = 5
 - **d.** C is equidist. from \overrightarrow{OA} and \overrightarrow{OB} .
- **43.** $\overrightarrow{BP} \perp \overrightarrow{AB}$ and $\overrightarrow{PC} \perp \overrightarrow{AC}$, thus $\angle ABP$ and $\angle ACP$ are rt. $\angle S$. Since \overrightarrow{AP} bisects $\angle BAC$, $\angle BAP \cong \angle CAP$. $\overrightarrow{AP} \cong \overrightarrow{AP}$ by the Reflexive Prop. of \cong . Thus $\triangle ABP \cong \triangle ACP$ by AAS and $\overline{PB} \cong \overline{PC}$ by CPCTC. Therefore, PB = PC.
- **44.** 1. $\overrightarrow{SP} \perp \overrightarrow{QP}; \overrightarrow{SR} \perp \overrightarrow{QR}$
 - **2.** $\angle QPS$ and $\angle QRS$ are rt. \triangle . **2.** Def. of \bot
 - **3.** $\angle OPS \cong \angle ORS$
 - 4. SP = SR
 - 5. $OS \cong OS$
 - **6.** $\triangle OPS \cong \triangle ORS$
 - 7. $\angle POS \cong \angle ROS$
 - **8.** \overline{QS} bisects $\angle PQR$.

- 1. Given
- **3.** All rt. \triangle are \cong .
- 4. Given
- **5.** Refl. Prop. of \cong
- **6.** HL
- 7. CPCTC
- **8.** Def. of \angle bis

45. D

46.
$$y = 2$$

47.
$$y = -(x-2)$$
 48. $y = -\frac{1}{2}x + 4$

48.
$$y = -\frac{1}{2}x + 4$$

49. Line ℓ through the midpoints of 2 sides of $\triangle ABC$ is equidistant from A, B, and C. This is because $\triangle 1 \cong \triangle 2$ and $\triangle 3 \cong \triangle 4$ by ASA.

- **50.** a. A point on the \perp bis. of a segment is equidistant from endpoints of the segment (\perp Bis. Thm.), so MA = MBand MB = MC.
 - **b.** MA = MB = MC by part a. $\angle EMA$, $\angle EMB$, and $\angle EMC$ are rt. \(\delta\) by def. of line \(\perp\) plane (page 49, Exercise 36). $\overline{MG} \cong \overline{MG}$ by the Refl. Prop. of \cong , so $\triangle EAM \cong$ $\triangle EBM \cong \triangle ECM$ by SAS.