1. $\overline{A C}$ is the \perp bis. of $\overline{B D}$.
2. 15
3. 18
4. 8
5. The set of points equidistant from H and S is the \perp bis. of $\overline{H S}$.
6. $x=12 ; J K=17 ; J M=17$
7. $y=3 ; S T=15 ; T U=15$
8. $27 ; 27$
9. $\overrightarrow{H L}$ is the \angle bis. of $\angle K H F$ because a point on $\overrightarrow{H L}$ is equidistant from $\overrightarrow{H K}$ and $\overrightarrow{H F}$.
10. 9
11. $54 ; 54$
12. 5
13. 10
14. 10
15. Isosceles; it has $2 \cong$ sides.
16. equidistant; $R T=R Z$
17. A point is on the \perp bis. of a segment if and only if it is equidistant from the endpts. of the segment.
18. 12
19. 4
20. 4
21. 16
22. 5
23. 10
24. 7
25. 14
26. isosceles; $C S=C T$ and $C T=C Y$ by the $\angle B$ Bis. Thm.
27. Answers may vary. Sample: The student needs to know that $\overline{Q S}$ bisects $\overline{P R}$.
28. No; A is not equidistant from the sides of $\angle X$.
29. Yes; $A X$ bis. $\angle T X R$.
30. Yes; A is equidistant from the sides of $\angle X$.
31. the pitcher's plate
32. a .

b. The \angle bisectors intersect at the same point.
c. Check students' work.
33. a.

b. The \perp bisectors intersect at the same point.
c. Check students' work.

34-39. Answers may vary. Samples are given.

34. $C(0,2), D(1,2) ; A C=B C=2, A D=B D=\sqrt{5}$
35. $C(3,2), D(3,0) ; A C=B C=3, A D=B D=\sqrt{13}$
36. $C(3,0), D(0,0) ; A C=B C=3, A D=B D=3 \sqrt{2}$
37. $C(0,0), D(1,1) ; A C=B C=3, A D=B D=\sqrt{5}$
38. $C(2,2), D(4,3) ; A C=B C=\sqrt{5}, A D=B D=\sqrt{10}$
39. $C\left(\frac{5}{2}, \frac{5}{2}\right), D(5,3) ; A C=B C=\frac{\sqrt{26}}{2}, A D=B D=\sqrt{13}$
40. $\overline{A C} \cong \overline{B C}$ by definition of bisector. $\overleftrightarrow{C D} \perp \overline{A B}$, so $\angle D C A$ and $\angle D C B$ are right \angle. Therefore, $\angle D C A \cong \angle D C B$ because all $\mathrm{rt} . \angle \Delta$ are $\cong \overline{D C} \cong \overline{D C}$ by the Reflexive Property of Congruence. Therefore, $\triangle C D A \cong \triangle C D B$ by Side-AngleSide. $\overline{D A} \cong \overline{D B}$ because CPCTC, so $D A=D B$.
41. $\triangle A B P$ and $\triangle A B Q$ are right triangles with a common leg and congruent hypotenuses. Thus, $\triangle B A P \cong \triangle B A Q$ by the HL Theorem. $\overline{P B} \cong \overline{B Q}$ using CPCTC, so $\overline{A B}$ bisects $\overline{P Q}$ by the definition of bisector. Hence, $\overline{A B}$ is the perpendicular bisector of $\overline{P Q}$.
42. a. $\ell: y=-\frac{3}{4} x+\frac{25}{2} ; m: x=10$
b. $(10,5)$
c. $C A=C B=5$
d. C is equidist. from $\overrightarrow{O A}$ and $\overrightarrow{O B}$.
43. $\overline{B P} \perp \overrightarrow{A B}$ and $\overline{P C} \perp \overrightarrow{A C}$, thus $\angle A B P$ and $\angle A C P$ are rt. $\angle \mathrm{s}$. Since $\overrightarrow{A P}$ bisects $\angle B A C, \angle B A P \cong \angle C A P . \overline{A P} \cong \overline{A P}$ by the
 $\overline{P B} \cong \overline{P C}$ by CPCTC. Therefore, $P B=P C$.
44. 45. $\overline{S P} \perp \overrightarrow{Q P} ; \overline{S R} \perp \overrightarrow{Q R}$
1. $\angle Q P S$ and $\angle Q R S$ are rt. $\angle \mathrm{s}$.
2. $\angle Q P S \cong \angle Q R S$
3. $S P=S R$
4. $\overline{Q S} \cong \overline{Q S}$
5. $\triangle Q P S \cong \triangle Q R S$
6. $\angle P Q S \cong \angle R Q S$
7. $\overrightarrow{Q S}$ bisects $\angle P Q R$.
8. Given
9. Def. of \perp
10. All rt. $\& s$ are \cong.
11. Given
12. Refl. Prop. of \cong
13. HL
14. СРСТС
15. Def. of \angle bis
16. D
17. $y=2$
18. $y=-(x-2)$
19. $y=-\frac{1}{2} x+4$
20. Line ℓ through the midpoints of 2 sides of $\triangle A B C$ is equidistant from A, B, and C. This is because $\triangle 1 \cong \triangle 2$ and $\triangle 3 \cong \triangle 4$ by ASA.

21. a. A point on the \perp bis. of a segment is equidistant from endpoints of the segment (\perp Bis. Thm.) , so $M A=M B$ and $M B=M C$.
b. $M A=M B=M C$ by part a. $\angle E M A, \angle E M B$, and $\angle E M C$ are rt. $\angle \mathrm{s}$ by def. of line \perp plane (page 49, Exercise 36).
$\overline{M G} \cong \overline{M G}$ by the Refl. Prop. of \cong, so $\triangle E A M \cong$ $\triangle E B M \cong \triangle E C M$ by SAS.
