1. (-2, -3) **2.** (0, 0) **3.** $(1\frac{1}{2}, 1)$ **4.** $(2, -1\frac{1}{2})$ **5.** $(-3, 1\frac{1}{2})$ **6.** $(-3, -4\frac{1}{2})$ **7.** $(3\frac{1}{2}, 3)$ **8.** C

9. *Z*

10. Find the \perp bisectors of the sides of the \triangle formed by the tennis court, the playground, and the volleyball court. That point will be equidistant from the vertices of the \triangle .

11. TY = 18; TW = 27

12. $ZY = 4\frac{1}{2}$; $ZU = 13\frac{1}{2}$

13. VY = 6; YX = 3

14. Median; *A* is a midpt.

15. Neither; it's not a segment drawn from a vertex.

16. Altitude; \overline{AB} is a segment drawn from a vertex of a \triangle perp. to the opp. side.

17.

18.

- **23.** 1:2 or 2:1
- **24.** Find the circumcenter of the \triangle formed by the three pines.
- **25–26.** Check students' work.
- **27.** D
- **28.** a. \angle bisector; it bisects an \angle .
 - **b.** None of these; it is a midsegment.
 - **c.** Altitude; \overline{AB} is \perp to a side from a vertex.
- **29.** a. \overline{AB}
 - **b.** \overline{BC}
 - C. XC
 - **d.** \perp bis.
- **30.** It is given that X is on line ℓ and line m. By the \angle Bisect. Thm., XD = XE and XE = XF. By the Trans. Prop. of =, XD = XE = XF. X is on ray n by the Conv. of the Bis. Thm.
- 31. A right triangle; check students' explanations.
- **32.** a. L(1,3); M(5,3); N(4,0)
 - **b.** \overrightarrow{AM} : $y = \frac{3}{5}x$; \overrightarrow{BN} : y = -3x + 12; \overrightarrow{CL} : $y = -\frac{3}{7}x + \frac{24}{7}$
 - **c.** $(\frac{10}{3}, 2)$
 - **d.** $-\frac{3}{7}(\frac{10}{3}) + \frac{24}{7} = -\frac{10}{7} + \frac{24}{7} = \frac{14}{7} = 2$
 - **e.** $AM = \sqrt{34}; AP = \sqrt{\frac{136}{9}} = \frac{2}{3}\sqrt{34}; BN = \sqrt{40} = 2\sqrt{10};$ $BP = \sqrt{\frac{160}{9}} = \frac{4}{3}\sqrt{10}; CL = \sqrt{58}; CP = \sqrt{\frac{232}{9}} = \frac{2}{3}\sqrt{58}$

- **33.** I-*D*; II-*B*; III-*C*; IV-*A*
- **34.** I-*A*; II-*C*; III-*B*; IV-*D*
- **35.** Answers may vary. Sample: Let $\triangle ABC$ be isosc. with base $\triangle B$ and C. If \overline{AD} bisects $\triangle A$, then it is \bot to \overline{BC} , and therefore the altitude from $\triangle A$. So, \overline{AD} contains the circumcenter, incenter, centroid, and orthocenter.
- **36.** ∠ bisectors

© Pearson Education, Inc., publishing as Pearson Prentice Hall. All rights reserved.

Geometry Chapter 5 115