- **1.** $\angle 3 \cong \angle 2$ because they are vertical $\angle s$ and $m \angle 1 > m \angle 3$ by Corollary to the Ext. \angle Thm. So, $m \angle 1 > m \angle 2$ by subst.
- **2.** An ext. \angle of a \triangle is larger than either remote int. \angle .
- **3.** $m \angle 1 > m \angle 4$ by Corollary to the Ext. \angle Thm. and $\angle 4 \cong \angle 2$ because if \parallel lines, then alt. int. $\angle s$ are \cong .
- **4.** $\angle M, \angle L, \angle K$ **5.** $\angle D, \angle C, \angle E$ **6.** $\angle G, \angle H, \angle I$ **7.** $\angle A, \angle B, \angle C$
- 8. $\angle E, \angle F, \angle D$ 9. $\angle Z, \angle X, \angle Y$
- **10.** $\overline{MN}, \overline{ON}, \overline{MO}$ **11.** $\overline{FH}, \overline{GF}, \overline{GH}$
- **12.** $\overline{TU}, \overline{UV}, \overline{TV}$ **13.** $\overline{AC}, \overline{AB}, \overline{CB}$
- **14.** $\overline{EF}, \overline{DE}, \overline{DF}$ **15.** $\overline{ZY}, \overline{XZ}, \overline{XY}$
- **16.** No; $2 + 3 \ge 6$.
- **17.** Yes; 11 + 12 > 15; 12 + 15 > 11; 11 + 15 > 12.
- **18.** No; $8 + 10 \ge 19$.
- **19.** Yes; 1 + 15 > 15; 15 + 15 > 1.
- **20.** Yes; 2 + 9 > 10; 9 + 10 > 2; 2 + 10 > 9.
- **21.** No; $4 + 5 \neq 9$. **22.** 4 < s < 20
- **23.** 11 < s < 21 **24.** 0 < s < 12
- **25.** 5 < s < 41 **26.** 3 < s < 11
- **27.** 15 < *s* < 55
- **28.** Answers may vary. Sample: If *Y* is the distance between Wichita and Topeka, then 20 < Y < 200.
- **29.** Let the distance between the peaks be *d* and the distances from the hiker to each of the peaks be *a* and *b*. Then d + a > b and d + b > a. Thus, d > b a and d > a b.

Geometry

120

- **b.** The third side of the 1st \triangle is longer than the third side of the 2nd \triangle .
- **c.** See diagram in part (a).
- **d.** The included \angle of the first \triangle is greater than the included \angle of the second \triangle .
- **31.** Answers may vary. Sample: The shortcut across the grass is shorter than the sum of the two paths.
- **32.** *AB*
- 33. a. $m \angle OTY$
 - **b.** *m*∠3
 - **c.** Base \angle s of an isosc. \triangle are \cong .
 - **d.** \angle Add. Post.
 - e. Comparison Prop. of Ineq.
 - f. Subst. (step 2)
 - **g.** An ext. \angle of a \triangle is greater than either remote int. \angle .
 - h. Trans. Prop. of Ineq.
- **34.** $\angle T$ is the largest \angle in $\triangle PTA$. Thus PA > PT because the longest side of a \triangle is opp. the largest \angle .

	\mathcal{O}		11 C)	
35.	\overline{RS}	36. <i>CD</i>	37.	<i>XY</i> 38.	$\frac{1}{2}$
39.	(2, 4), (2, 5), (4, 5), (4, 6)	, (2, 6), (3, , (4, 7), (4,	3), (3, 4), (3, 8)	, 6), (3, 7), (4, 3), (4, 4),
40.	$\frac{5}{18}$				
Geon	netry			C	hapter 5

121

CD = AC was given so $\triangle ACD$ is isos. by def. of isos. \triangle . This means $m \angle D = m \angle CAD$. Then $m \angle DAB > m \angle CAD$ by the Comparison Prop. of Ineq. So by subst., $m \angle DAB >$ $m \angle D$ and by Thm. 5-11 DB > AB. Since DC + CB = DB, by subst. DC + CB > AB. Using subst. again, AC + CB > AB.