1. $\angle 3 \cong \angle 2$ because they are vertical \angle and $m \angle 1>m \angle 3$ by Corollary to the Ext. \angle Thm. So, $m \angle 1>m \angle 2$ by subst.
2. An ext. \angle of a \triangle is larger than either remote int. \angle.
3. $m \angle 1>m \angle 4$ by Corollary to the Ext. \angle Thm. and $\angle 4 \cong \angle 2$ because if $\|$ lines, then alt. int. $\angle s$ are \cong.
4. $\angle M, \angle L, \angle K$
5. $\angle D, \angle C, \angle E$
6. $\angle G, \angle H, \angle I$
7. $\angle A, \angle B, \angle C$
8. $\angle E, \angle F, \angle D$
9. $\angle Z, \angle X, \angle Y$
10. $\overline{M N}, \overline{O N}, \overline{M O}$
11. $\overline{F H}, \overline{G F}, \overline{G H}$
12. $\overline{T U}, \overline{U V}, \overline{T V}$
13. $\overline{A C}, \overline{A B}, \overline{C B}$
14. $\overline{E F}, \overline{D E}, \overline{D F}$
15. $\overline{Z Y}, \overline{X Z}, \overline{X Y}$
16. $\mathrm{No} ; 2+3 \ngtr 6$.
17. Yes; $11+12>15 ; 12+15>11 ; 11+15>12$.
18. $\mathrm{No} ; 8+10 \ngtr 19$.
19. Yes; $1+15>15 ; 15+15>1$.
20. Yes; $2+9>10 ; 9+10>2 ; 2+10>9$.
21. No $; 4+5 \ngtr 9$.
22. $4<s<20$
23. $11<s<21$
24. $0<s<12$
25. $5<s<41$
26. $3<s<11$
27. $15<s<55$
28. Answers may vary. Sample: If Y is the distance between Wichita and Topeka, then $20<Y<200$.
29. Let the distance between the peaks be d and the distances from the hiker to each of the peaks be a and b. Then $d+a>b$ and $d+b>a$. Thus, $d>b-a$ and $d>a-b$.
30.

b. The third side of the 1 st Δ is longer than the third side of the $2 \mathrm{nd} \triangle$.
c. See diagram in part (a).
d. The included \angle of the first \triangle is greater than the included \angle of the second \triangle.
31. Answers may vary. Sample: The shortcut across the grass is shorter than the sum of the two paths.
32. $\overline{A B}$
33. a. $m \angle O T Y$
b. $m \angle 3$
c. Base $\angle s$ of an isosc. \triangle are \cong.
d. \angle Add. Post.
e. Comparison Prop. of Ineq.
f. Subst. (step 2)
g. An ext. \angle of a \triangle is greater than either remote int. \angle.
h. Trans. Prop. of Ineq.
34. $\angle T$ is the largest \angle in $\triangle P T A$. Thus $P A>P T$ because the longest side of a \triangle is opp. the largest \angle.
35. $\overline{R S}$
36. $\overline{C D}$
37. $\overline{X Y}$
38. $\frac{1}{2}$
39. $(2,4),(2,5),(2,6),(3,3),(3,4),(3,6),(3,7),(4,3),(4,4)$, $(4,5),(4,6),(4,7),(4,8)$
40. $\frac{5}{18}$
41. D

$C D=A C$ was given so $\triangle A C D$ is isos. by def. of isos. \triangle. This means $m \angle D=m \angle C A D$. Then $m \angle D A B>m \angle C A D$ by the Comparison Prop. of Ineq. So by subst., $m \angle D A B>$ $m \angle D$ and by Thm. 5-11 $D B>A B$. Since $D C+C B=D B$, by subst. $D C+C B>A B$. Using subst. again, $A C+C B>A B$.

