1. 127
2. 67
3. 76
4. 124
5. 100
6. 118
7. $3 ; 10,20,20$
8. $22 ; 18.5,23.6,23.6$
9. 20
10. 18
11. 17
12. $12 ; m \angle Q=m \angle S=36, m \angle P=m \angle R=144$
13. $6 ; m \angle H=m \angle J=30, m \angle I=m \angle K=150$
14. $x=6, y=8$
15. $x=5, y=7$

16. $x=7, y=10$
17. $x=6, y=9$
18. $x=3, y=4$
19. $12 ; 24$
20. Pick 4 equally spaced lines on the paper. Place the paper so that the first button is on the first line and the last button is on the fourth line. Draw a line between the first and last buttons. The remaining buttons should be placed where the drawn line crosses the $2 \|$ lines on the paper.
21. 3
22. 3
23. 6
24. 6
25. 9
26. 2.25
27. 2.25
28. 4.5
29. 4.5
30. 6.75
31. $B C=A D=14.5 \mathrm{in}$.; $A B=C D=9.5 \mathrm{in}$.
32. $B C=A D=33 \mathrm{~cm} ; A B=C D=13 \mathrm{~cm}$
33. A
34. The opp. $\& \leqslant$ are \cong, so they have $=$ measures. Consecutive $\&$ are suppl., so their sum is 180 .
35. a. $\overline{D C}$
b. $\overline{A D}$
C. \cong
d. Reflexive
e. ASA
f. СРСТС
36.

40. The lines going across may not be $\|$ since they are not marked as $\|$.
41. 18,162
42. Answers may vary. Sample:

1. LENS and NGTH are $\square \mathrm{s}$. (Given)
2. $\angle E L S \cong \angle E N S$ and $\angle G T H \cong \angle G N H$ (Opp. \measuredangle of a \square are \cong.)
3. $\angle E N S \cong \angle G N H$ (Vertical \angle are \cong.)
4. $\angle E L S \cong \angle G T H$ (Trans. Prop. of \cong)
5. Answers may vary. Sample: In $\mathbb{\Omega}$ LENS and NGTH, $\overline{G T} \| \overline{E H}$ and $\overline{E H} \| \overline{L S}$ by the def. of a \square. Therefore $\overline{L S} \| \overline{G T}$ because if 2 lines are $\|$ to the same line then they are \| to each other.
6. Answers may vary. Sample:
7. LENS and NGTH are $\boxed{\text { s. }}$. (Given)
8. $\angle G T H \cong \angle G N H$ (Opp. $\angle \mathrm{s}$ of a \square are \cong.)
9. $\angle E N S \cong \angle G N H$ (Vertical \measuredangle are \cong.)
10. $\angle L E N$ is supp. to $\angle E N S$ (Consec. $\angle s$ in a \square are suppl.)
11. $\angle E N S \cong \angle G T H$ (Trans. Prop. of \cong)
12. $\angle E$ is suppl. to $\angle T$. (Suppl. of $\cong \angle s$ are suppl.)
13. $x=12, y=4$
14. $x=0, y=5$
15. $x=9, y=6$
16. Answers may vary. Sample: In $\square R S T W$ and $\square X Y T Z$, $\angle R \cong \angle T$ and $\angle X \cong \angle T$ because opp. $\angle \mathrm{s}$ of a \square are \cong. Then $\angle R \cong \angle X$ by the Trans. Prop. of \cong.
17. In $\square R S T W$ and $\square X Y T Z, \overline{X Y} \| \overline{T W}$ and $\overline{R S} \| \overline{T W}$ by the def. of a \square. Then $\overline{X Y} \| \overline{R S}$ because if 2 lines are $\|$ to the same line, then they are $\|$ to each other.
18. $\overline{A B} \| \overline{D C}$ and $\overline{A D} \| \overline{B C}$ by def. of $\square . \angle 2 \cong \angle 3$ and $\angle 1 \cong \angle 4$ by alt. int. $\angle \mathrm{s} . \angle 1 \cong \angle 2$ by def. of \angle bisect., so $\angle 3 \cong \angle 4$ by Trans. Prop. of \cong.
19. a. Answers may vary. Check students' work.
b. No; the corr. sides can be \cong but the \llcorner may not be.
20. a. $\overleftrightarrow{A B}\|\overleftrightarrow{C D}\| \overleftrightarrow{E F}$ and $\overline{A C} \cong \overline{C E}$ (Given)
b. $A B G C$ and $C D H E$ are parallelograms. (Def. of a \square)
c. $\overline{B G} \cong \overline{A C}$ and $\overline{D H} \cong \overline{C E}$ (Opp. sides of a \square are \cong.)
d. $\overline{B G} \cong \overline{D H}$ (Trans. Prop. of \cong)
e. $\overline{B G} \| \overline{D H}$ (If 2 lines are $\|$ to the same line, then they are $\|$ to each other.)
f. $\angle 2 \cong \angle 1, \angle 1 \cong \angle 4, \angle 4 \cong \angle 5$, and $\angle 3 \cong \angle 6$ (If 2 lines are $\|$, then the corr. \triangle are \cong.)
g. $\angle 2 \cong \angle 5$ (Trans. Prop. of \cong)
h. $\triangle B G D \cong \triangle D H F$ (AAS)
i. $\overline{B D} \cong \overline{D F}$ (СРСТС)
21. a. Given: 2 sides and the included \angle of $\square A B C D$ are \cong to the corr. parts of $\square W X Y Z$. Let $\angle A \cong \angle W, \overline{A B} \cong W X$ and $\overline{A D} \cong \overline{W Z}$. Since opp. \triangle of a \square are $\cong, \angle A \cong \angle C$ and $\angle W \cong \angle Y$. Thus $\angle C \cong \angle Y$ by the Trans. Prop. of \cong. Similarly, opp. sides of a \square are \cong, thus $\overline{A B} \cong \overline{C D}$ and $\overline{W X} \cong \overline{Z Y}$. Using the Trans. Prop. of $\cong, \overline{C D} \cong \overline{Z Y}$. The same can be done to prove $\overline{B C} \cong \overline{X Y}$. Since consec. $\mathbb{\perp}$ of a \square are suppl., $\angle A$ is suppl. to $\angle D$, and $\angle W$ is suppl. to $\angle Z$. Suppls. of $\cong \triangle$ are \cong, thus $\angle D \cong \angle Z$. The same can be done to prove $\angle B \cong \angle X$. Therefore, since all corr. \leftrightarrow and sides are $\cong, ~ \square A B C D \cong \square W X Y Z$.
b. No; opp. \triangleq and sides are not necessarily \cong in a trapezoid.
