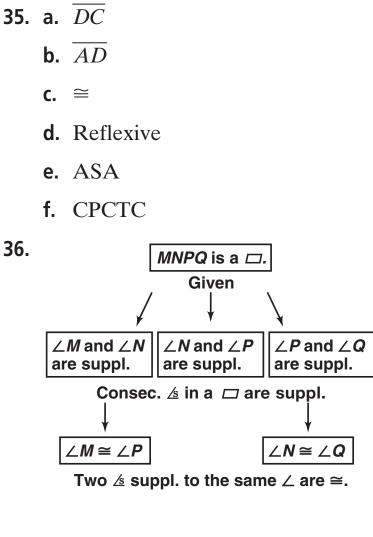
1.	127	2. 67	
3.	76	4. 124	
5.	100	6. 118	
7.	3; 10, 20, 20	8. 22; 18.5, 2	3.6, 23.6
9.	20 1	0. 18 11	. 17
12.	$12; m \angle Q = m \angle S = 36, m \angle P = m \angle R = 144$		
13.	6; $m \angle H = m \angle J = 30, m \angle I = m \angle K = 150$		
14.	x = 6, y = 8	15. $x = 5, y =$	= 7
16.	x = 7, y = 10	17. $x = 6, y =$	= 9
18.	x = 3, y = 4	19. 12; 24	

20. Pick 4 equally spaced lines on the paper. Place the paper so that the first button is on the first line and the last button is on the fourth line. Draw a line between the first and last buttons. The remaining buttons should be placed where the drawn line crosses the 2 || lines on the paper.

21. 3	22. 3	23. 6	24. 6
25. 9	26. 2.25	27. 2.25	28. 4.5
29. 4.5		30. 6.75	

- **31.** BC = AD = 14.5 in.; AB = CD = 9.5 in.
- **32.** BC = AD = 33 cm; AB = CD = 13 cm
- **33.** A
- **34.** The opp. ∠s are ≅, so they have = measures. Consecutive ∠s are suppl., so their sum is 180.



- **37.** 38, 32, 110 **38.** 81, 28, 71 **39.** 95, 37, 37
- **40.** The lines going across may not be || since they are not marked as ||.
- **41.** 18, 162
- 42. Answers may vary. Sample:
 - **1.** *LENS* and *NGTH* are \square s. (Given)
 - **2.** $\angle ELS \cong \angle ENS$ and $\angle GTH \cong \angle GNH$ (Opp. $\angle s$ of a \square are \cong .)
 - **3.** $\angle ENS \cong \angle GNH$ (Vertical $\angle s$ are \cong .)
 - **4.** $\angle ELS \cong \angle GTH$ (Trans. Prop. of \cong)

130

- **43.** Answers may vary. Sample: In \square *LENS* and *NGTH*, $\overline{GT} \parallel \overline{EH}$ and $\overline{EH} \parallel \overline{LS}$ by the def. of a \square . Therefore $\overline{LS} \parallel \overline{GT}$ because if 2 lines are \parallel to the same line then they are \parallel to each other.
- 44. Answers may vary. Sample:
 - **1.** *LENS* and *NGTH* are \square . (Given)
 - **2.** $\angle GTH \cong \angle GNH$ (Opp. $\angle s$ of a \square are \cong .)
 - **3.** $\angle ENS \cong \angle GNH$ (Vertical \measuredangle s are \cong .)
 - **4.** $\angle LEN$ is supp. to $\angle ENS$ (Consec. $\angle s$ in a \square are suppl.)
 - **5.** $\angle ENS \cong \angle GTH$ (Trans. Prop. of \cong)
 - **6.** $\angle E$ is suppl. to $\angle T$. (Suppl. of $\cong \angle s$ are suppl.)
- **45.** x = 12, y = 4
- **46.** x = 0, y = 5 **47.** x = 9, y = 6
- **48.** Answers may vary. Sample: In \square *RSTW* and \square *XYTZ*, $\angle R \cong \angle T$ and $\angle X \cong \angle T$ because opp. $\angle s$ of a \square are \cong . Then $\angle R \cong \angle X$ by the Trans. Prop. of \cong .
- **49.** In \square *RSTW* and \square *XYTZ*, $\overline{XY} \parallel \overline{TW}$ and $\overline{RS} \parallel \overline{TW}$ by the def. of a \square . Then $\overline{XY} \parallel \overline{RS}$ because if 2 lines are \parallel to the same line, then they are \parallel to each other.
- **50.** $\overline{AB} \parallel \overline{DC}$ and $\overline{AD} \parallel \overline{BC}$ by def. of $\Box . \angle 2 \cong \angle 3$ and $\angle 1 \cong \angle 4$ by alt. int. $\angle 1 \cong \angle 2$ by def. of \angle bisect., so $\angle 3 \cong \angle 4$ by Trans. Prop. of \cong .
- **51. a.** Answers may vary. Check students' work.
 - **b.** No; the corr. sides can be \cong but the \angle s may not be.

52. a.
$$\overrightarrow{AB} \parallel \overrightarrow{CD} \parallel \overrightarrow{EF}$$
 and $\overrightarrow{AC} \cong \overrightarrow{CE}$ (Given)

- **b.** *ABGC* and *CDHE* are parallelograms. (Def. of a \square)
- **c.** $\overline{BG} \cong \overline{AC}$ and $\overline{DH} \cong \overline{CE}$ (Opp. sides of a \square are \cong .)
- **d.** $\overline{BG} \cong \overline{DH}$ (Trans. Prop. of \cong)
- e. $\overline{BG} \parallel \overline{DH}$ (If 2 lines are \parallel to the same line, then they are \parallel to each other.)
- **f.** $\angle 2 \cong \angle 1, \angle 1 \cong \angle 4, \angle 4 \cong \angle 5$, and $\angle 3 \cong \angle 6$ (If 2 lines are \parallel , then the corr. $\angle s$ are \cong .)
- **g.** $\angle 2 \cong \angle 5$ (Trans. Prop. of \cong)
- **h.** $\triangle BGD \cong \triangle DHF$ (AAS)
- i. $\overline{BD} \cong \overline{DF}$ (CPCTC)
- **53.** a. Given: 2 sides and the included \angle of $\Box ABCD$ are \cong to the corr. parts of $\Box WXYZ$. Let $\angle A \cong \angle W$, $\overline{AB} \cong WX$ and $\overline{AD} \cong WZ$. Since opp. \measuredangle of a \Box are \cong , $\angle A \cong \angle C$ and $\angle W \cong \angle Y$. Thus $\angle C \cong \angle Y$ by the Trans. Prop. of \cong . Similarly, opp. sides of a \Box are \cong , thus $\overline{AB} \cong \overline{CD}$ and $\overline{WX} \cong \overline{ZY}$. Using the Trans. Prop. of \cong , $\overline{CD} \cong \overline{ZY}$. The same can be done to prove $\overline{BC} \cong \overline{XY}$. Since consec. \measuredangle of a \Box are suppl., $\angle A$ is suppl. to $\angle D$, and $\angle W$ is suppl. to $\angle Z$. Suppls. of $\cong \measuredangle$ are \cong , thus $\angle D \cong \angle Z$. The same can be done to prove $\angle B \cong \angle X$. Therefore, since all corr. \measuredangle and sides are \cong , $\Box ABCD \cong \Box WXYZ$.
 - **b.** No; opp. \angle s and sides are not necessarily \cong in a trapezoid.