2. x = 3, y = 4

3. x = 1.6, y = 1

4. $\frac{5}{3}$

5. 5

6. 13

- 7. Yes; both pairs of opp. sides are \cong .
- 8. No; the quad. could be a kite.
- **9.** Yes; both pairs of opp. \triangle are \cong .
- **10.** It remains a \square because the shelves and connecting pieces remain \parallel .
- **11.** A quad. is a \square if and only if opp. sides are \cong (6-1 and 6-5); opp. \triangle are \cong (6-2 and 6-6); diags. bis. each other (6-3 and 6-7).
- 12. a. Distr. Prop.
 - **b.** Div. Prop. of Eq.
 - c. $\overline{AD} \parallel \overline{BC}, \overline{AB} \parallel \overline{DC}$
 - **d.** If same-side int. \triangle are suppl., the lines are \parallel .
 - e. Def. of □
- **13.** Draw diagonals \overline{TX} and \overline{WY} intersecting at R.

a.
$$\overline{TW} \cong \overline{YX}$$
 (Given)

- **b.** $\angle TWR \cong \angle XYR$ (Alt. Int. $\angle S \cong$)
- **c.** $\angle WTR \cong \angle YXR$ (Alt. Int. $\angle S \cong$)
- **d.** $\triangle TWR \cong \triangle YXR \text{ (ASA)}$
- e. $\overline{WR} \cong \overline{YR}$ (CPCTC)
- **f.** $\overline{TR} \cong \overline{XR}$ (CPCTC)
- **g.** The diagonals bisect each other. (def. of bis.)
- **h.** TWXY is a \square (Thm. 6-7).

16. c = 8, a = 24

17. k = 9, m = 23.4

18. D

19. Answers may vary. Sample:

- **20.** $\angle JKN \cong \angle LMN$ (given), $\angle LKN \cong \angle JMN$ (given), and $\overline{MK} \cong \overline{MK}$, so $\triangle JKM \cong \triangle LMK$ by ASA. $\overline{JK} \cong \overline{ML}$ and $\overline{MJ} \cong \overline{LK}$ (CPCTC), so JKLM is a \square because opp. sides are \cong (Thm. 6-5).
- **21.** $\triangle TRS \cong \triangle RTW$ (given), so $\overline{ST} \cong \overline{RW}$ and $\overline{SR} \cong \overline{TW}$. RSTW is a \square because opp. sides are \cong (Thm. 6-5).

22. (4, 0)

23. (6, 6)

24. (-2,4)

- **25.** You can show a quad. is a \square if both pairs of opp. sides are \parallel or \cong , if both pairs of opp. \triangle are \cong , if diagonals bisect each other, if all consecutive \triangle are suppl., or if one pair of opp. sides is both \parallel and \cong .
- **26.** $\frac{1}{6}$

Answers for Lesson 6-3, pp. 324–326 Exercises (cont.)

- 27. Answers may vary. Sample:
 - **1.** $\overline{AB} \cong \overline{CD}, \overline{AC} \cong \overline{BD}$ (Given)
 - **2.** ACDB is a \square . (If opp. sides of a quad. are \cong , then it is a \square .)
 - **3.** *M* is the midpoint of \overline{BC} . (The diag. of a \square bisect each other.)
 - **4.** \overline{AM} is a median. (Def. of a median)
- **28.** G(-4,1), H(1,3)

© Pearson Education, Inc., publishing as Pearson Prentice Hall. All rights reserved.

Geometry Chapter 6 1