1. $38,38,38,38$
2. $26,128,128$
3. $118,31,31$
4. $33.5,33.5,113,33.5$
5. $32,90,58,32$
6. $90,60,60,30$
7. $55,35,55,90$
8. $60,90,30$
9. $90,55,90$
10. $4 ; L N=M P=4$
11. $3 ; L N=M P=7$
12. $1 ; L N=M P=4$
13. $9 ; L N=M P=67$
14. $\frac{5}{3} ; L N=M P=\frac{29}{3}=9 \frac{2}{3}$
15. $\frac{5}{2} ; L N=M P=12 \frac{1}{2}$
© Pearson Education, Inc., publishing as Pearson Prentice Hall. All rights reserved.
16. rhombus; one diag. bis. $2 \& s$ of the \square (Thm. 6-12).
17. rhombus; the diags. are \perp.
18. neither; the figure could be a \square that is neither a rhombus nor a rect.
19. The pairs of opp. sides of the frame remain \cong, so the frame remains a \square.
20. After measuring the sides, she can measure the diagonals. If the diags. are \cong, then the figure is a rectangle by Thm. 6-14.
21. Square; a square is both a rectangle and a rhombus, so its diag. have the properties of both.
22. a. Def. of a rhombus
b. Diagonals of a \square bisect each other.
c. $\overline{A E} \cong \overline{A E}$
d. Reflexive Prop. of \cong
e. $\triangle A B E \cong \triangle A D E$
f. СРСТС
g. \angle Add. Post.
h. $\angle A E B$ and $\angle A E D$ are rt. $\angle \mathrm{s}$.
© Pearson Education, Inc., publishing as Pearson Prentice Hall. All rights reserved.
i. \cong suppl. $\measuredangle \mathrm{s}$ are $\mathrm{rt} . ~ \Perp \mathrm{Thm}$.
j. Def. of \perp
23. Answers may vary. Sample: The diagonals of a \square bisect each other so $\overline{A E} \cong \overline{C E}$. Both $\angle A E D$ and $\angle C E D$ are right $\angle \mathrm{s}$ because $\overline{A C} \perp \overline{B D}$, and since $\overline{D E} \cong \overline{D E}$ by the Reflexive Prop., $\triangle A E D \cong \triangle C E D$ by SAS. By CPCTC $\overline{A D} \cong \overline{C D}$, and since opp. sides of a \square are $\cong, \overline{A B} \cong \overline{B C} \cong \overline{C D} \cong \overline{A D}$. So $A B C D$ is a rhombus because it has $4 \cong$ sides.
24. A

25-34. Symbols may vary. Samples are given:
 parallelogram:
 rhombus: \mathbb{B}
 rectangle: \square
 square: S

25. ${ }^{\Omega}$, s
26. $\square, \boxed{\square}, \square, ~ \llbracket$
27. $\square, \boxed{\circledR} \square \square, \square$
28. \square, \square
29. $\square, \llbracket, \square$, \square
30. \square, \subseteq
31. B , S
32.

Diag. are \cong, diag. are \perp.
34. ${ }^{1}$, S
36.

Diag. are \perp and \cong.
37.

Diag. are \cong, diag. are \perp.
38. a. Opp. sides are \cong and $\|$; diag. bis. each other; opp. $\angle s$ are \cong; consec. $\angle s$ are suppl.
b. All sides are \cong; diag. are \cong.
c. All \measuredangle are rt. \measuredangle; diag. are \perp bis. of each other; each diag. bis. two $\angle \leq$.
39. 1. $A B C D$ is a parallelogram. (Given) $\overline{A C}$ bisects $\angle B A D$ and $\angle B C D$. (Given)
2. $\angle 1 \cong \angle 2, \angle 3 \cong \angle 4$ (Def. of bisect)
3. $\overline{A C} \cong \overline{A C}$ (Refl. Prop. of \cong)
4. $\triangle A B C \cong \triangle A D C$ (ASA)
5. $\overline{A B} \cong \overline{A D}$ (CPCTC)
6. $\overline{A B} \cong \overline{D C}, \overline{A D} \cong \overline{B C}$ (Opp. sides of a \square are \cong.)
7. $\overline{A B} \cong \overline{B C} \cong \overline{C D} \cong \overline{A D}$ (Trans. Prop. of \cong)
8. $A B C D$ is a rhombus. (Def. of rhomb.)
40.

41. Yes; since all right $\angle s$ are \cong, the opp. $\angle \mathrm{s}$ are \cong and it is a \square. Since it has all right \measuredangle, it is a rectangle.
42. Yes; 4 sides are \cong, so the opp. sides are \cong making it a \square. Since it has $4 \cong$ sides it is also a rhombus.
43. Yes; a quad. with $4 \cong$ sides is a \square and a \square with $4 \cong$ sides and 4 right $\angle s$ is a square.
44. 30
45. $x=5, y=32, z=7.5$
46. $x=7.5, y=3$

47-49. Drawings may vary. Samples are given.
47. Square, rectangle, isosceles trapezoid, kite

48. Rhombus, \square, trapezoid, kite

49. For $a<b$: trapezoid, isosc. trapezoid $\left(a>\frac{1}{2} b\right), \square$, rhombus, kite

For $a>b$: trapezoid, isosc. trapezoid, \square, rhombus ($a<2 b$), kite, rectangle,
 square (if $a=\sqrt{2} b$)

50. 16,16
51. 2,2
52. 1,1
53. 1,1

54-59. Answers may vary. Samples are given.
54. Draw diag. 1 , and construct its midpt. Draw a line through the mdpt. Construct segments of length diag. 2 in opp. directions from mdpt. Then, bisect these segments. Connect these mdpts. with the endpts. of diag. 1.
55. Construct a rt. \angle, and draw diag. 1 from its vertex. Construct the \perp from the opp. end of diag. 1 to a side of the rt. \angle. Repeat to other side.
56. Same as 54 , but construct a \perp line at the midpt. of diag. 1 .
57. Same as 56 , except make the diag. \cong.
58. Draw diag. 1. Construct a \perp at a pt. different than the mdpt. Construct segments on the \perp line of length diag. 2 in opp. directions from the pt. Then, bisect these segments. Connect these midpts. to the endpts. of diag. 1.
59. Draw an acute \angle. Use the compass to mark the length of diag. 1 on one side of the angle. The other side will be a base for the trap. Construct a line $\|$ to the base through the nonvertex endpt. of diag. 1. Set the compass to the length of diag. 2 and place the point on the non-vertex endpt. of the base. Draw an arc that intersects the line $\|$ to the base. Draw diag. 2 through these two points. Finish by drawing the non-\| sides of the trap.
60. Impossible; if the diag. of a \square are \cong, then it would have to be a rectangle and have right \angle.
61. Yes; \cong diag. in a \square mean it can be a rectangle with 2 opp. sides 2 cm long.
62. Impossible; in a \square, consecutive \angle s must be supp., so all \angle must be right $\stackrel{\Delta}{ }$. This would make it a rectangle.
63. Given $\square A B C D$ with diag. $\overline{A C}$. Let $\overline{A C}$ bisect $\angle B A D$. Because $\triangle A B C \cong \triangle D A C, A B=D A$ by CPCTC. But since opp. sides of a \square are $\cong, A B=C D$ and $B C=D A$. So $A B=B C=C D=D A$, and $\square A B C D$ is a rhombus. The new statement is true.

