Answers for Lesson 6-5, pp. 338–340 Exercises

1.	77, 103, 103	2. 69, 69, 111
3.	49, 131, 131	4. 105, 75, 75
5.	115, 115, 65	6. 120, 120, 60
7.	a. isosc. trapezoids	
	b. 69, 69, 111, 111	
8.	90, 68	9. 90, 45, 45
10.	108, 108	11. 90, 26, 90
12.	90, 40, 90	13. 90, 55, 90, 55, 35
14.	90, 52, 38, 37, 53	
15.	90, 90, 90, 90, 46, 34, 56, 44	, 56, 44

16. 112, 112

17. Answers may vary. Sample:

18. 12, 12, 21, 21

Geometry

19. Explanations may vary. Sample: If both ▲ are bisected, then this combined with KM ≅ KM by the Reflexive Prop. means △KLM ≅ △KNM by SAS. By CPCTC, ∠L ≅ ∠N. ∠L and ∠N are opp. ▲, but if KLMN is isos., both pairs of base ▲ are also ≅. By the Trans. Prop., all 4 angles are ≅, so KLMN must be a rect. or a square. This contradicts what is given, so KM cannot bisect ∠LMN and ∠LKN.

20.	12	21. 15	22.	15
23.	3	24. 4	25.	1

- **26.** 28
- **27.** x = 35, y = 30
- **28.** *x* = 18, *y* = 108
- **29.** Isosc. trapezoid; all the large rt. \triangle appear to be \cong .
- **30.** 112, 68, 68
- **31.** Yes, the $\cong \angle$ can be obtuse.
- **32.** Yes, the $\cong \angle$ can be obtuse, as well as one other \angle .
- 33. Yes; if 2 ≅ ∠s are rt. ∠s, they are suppl. The other 2 ∠s are also suppl.
- 34. No; if two consecutive ∠s are suppl., then another pair must be also because one pair of opp. ∠s is ≅. Therefore, the opp. ∠s would be ≅, which means the figure would be a □ and not a kite.
- **35.** Yes; the $\cong \angle$ may be 45° each.
- **36.** No; if two consecutive *A* were compl., then the kite would be concave.
- **37.** Rhombuses and squares would be kites since opp. sides can be \cong also.

Answers for Lesson 6-5, pp. 338–340 Exercises (cont.)

. .

40. Draw \overline{BI} as described, then draw \overline{BT} and \overline{BP} . **1.** $\overline{TR} \cong \overline{PA}$ (Given) **2.** $\angle R \cong \angle A$ (Base $\angle s$ of isosc. trap. are \cong .) **3.** $\overline{RB} \cong \overline{AB}$ (Def. of bisector) **4.** $\triangle TRB \cong \triangle PAB$ (SAS) **5.** $\overline{BT} \cong \overline{BP}$ (CPCTC) **6.** $\angle RBT \cong \angle ABP$ (CPCTC) 7. $\angle TBI \cong \triangle PBI$ (Compl. of $\cong \measuredangle$ are \cong .) **8.** $\overline{BI} \cong \overline{BI}$ (Refl. Prop. of \cong) **9.** $\triangle TBI \cong \triangle PBI$ (SAS) **10.** $\angle BIT \cong \angle BIP$ (CPCTC) **11.** $\angle BIT$ and $\angle BIP$ are rt. $\angle s$. (\cong suppl. $\angle s$ are rt. $\angle s$.) **12.** $\overline{TI} \cong \overline{PI}$ (CPCTC) **13.** \overline{BI} is \perp bis. of \overline{TP} . (Def. of \perp bis.)

41-42. Check students' justifications. Samples are given.

41. It is one half the sum of the lengths of the bases; draw a diag. of the trap. to form 2 &. The bases *B* and *b* of the trap. are each a base of a \triangle . Then the segment joining the midpts. of the non- \parallel sides is the sum of the midsegments of the &. This sum is $\frac{1}{2}B + \frac{1}{2}b = \frac{1}{2}(B + b)$.

42. It is one half the difference of the lengths of the bases. By the \triangle Midsegment Thm. and the \parallel Post., midpoints L, M, N,

and *P* are collinear. $MN = LN - LM = \frac{1}{2}B - \frac{1}{2}b$ (\triangle Midsegment Thm.) = $\frac{1}{2}(B - b)$.

- **43.** D is any point on \overleftarrow{BN} such that $ND \neq BN$ and D is below N.
- **44.** 1. $\overline{AB} \cong \overline{CB}, \overline{AD} \cong \overline{CD}$ (Given)
 - **2.** $\overline{BD} \cong \overline{BD}$ (Refl. Prop. of \cong)
 - **3.** $\triangle ABD \cong \triangle CBD$ (SSS)
 - **4.** $\angle A \cong \angle C$ (CPCTC)

Geometry