1. $77,103,103$
2. $69,69,111$
3. $49,131,131$
4. $105,75,75$
5. $115,115,65$
6. $120,120,60$
7. a. isosc. trapezoids
b. $69,69,111,111$
8. 90,68
9. $90,45,45$
10. 108,108
11. $90,26,90$
12. $90,40,90$
13. $90,55,90,55,35$
14. $90,52,38,37,53$
15. $90,90,90,90,46,34,56,44,56,44$
16. 112,112
17. Answers may vary. Sample:

18. $12,12,21,21$
19. Explanations may vary. Sample: If both $\angle s$ are bisected, then this combined with $\overline{K M} \cong \overline{K M}$ by the Reflexive Prop. means $\triangle K L M \cong \triangle K N M$ by SAS. By CPCTC, $\angle L \cong \angle N$. $\angle L$ and $\angle N$ are opp. $\angle s$, but if $K L M N$ is isos., both pairs of base $\angle s$ are also \cong. By the Trans. Prop., all 4 angles are \cong, so $K L M N$ must be a rect. or a square. This contradicts what is given, so $\overline{K M}$ cannot bisect $\angle L M N$ and $\angle L K N$.
20. 12
21. 15
22. 15
23. 3
24. 4
25. 1
26. 28
27. $x=35, y=30$
28. $x=18, y=108$
29. Isosc. trapezoid; all the large rt. \& appear to be \cong.
30. $112,68,68$
31. Yes, the $\cong \measuredangle$ can be obtuse.
32. Yes, the $\cong \angle s$ can be obtuse, as well as one other \angle.
33. Yes; if $2 \cong \notin$ are rt. $\llcorner s$, they are suppl. The other $2 \notin$ are also suppl.
34. No; if two consecutive \angle s are suppl., then another pair must be also because one pair of opp. \llcorner is \cong. Therefore, the opp. \lfloor would be \cong, which means the figure would be a \square and not a kite.
35. Yes; the $\cong \angle s$ may be 45° each.
36. No; if two consecutive $\&$ were compl., then the kite would be concave.
37. Rhombuses and squares would be kites since opp. sides can be \cong also.
38. 39. $A B C D$ is an isos. trapezoid, $\overline{A B} \cong \overline{D C}$. (Given)
1. Draw $\overline{A E} \| \overline{D C}$. (Two points determine a line.)
2. $\overline{A D} \| \overline{E C}$ (Def. of a trapezoid)
3. $A E C D$ is a \square. (Def. of a \square)
4. $\angle C \cong \angle 1$ (Corr. $\angle s$ are \cong.)
5. $\overline{D C} \cong \overline{A E}$ (Opp. sides of a \square are \cong.)
6. $\overline{A B} \cong \overline{A E}$ (Trans. Prop. of \cong)
7. $\triangle A E B$ is an isosc. \triangle. (Def. of an isosc. \triangle)
© Pearson Education, Inc., publishing as Pearson Prentice Hall. All rights reserved.
8. $\angle B \cong \angle 1$ (Base $\angle s$ of an isosc. \triangle are \cong.)
9. $\angle B \cong \angle C$ (Trans. Prop. of \cong)
10. $\angle B$ and $\angle B A D$ are suppl., $\angle C$ and $\angle C D A$ are suppl. (Same side int. $\angle \mathrm{s}$ are suppl.)
11. $\angle B A D \cong \angle C D A$ (Suppl. of $\cong \angle$ are \cong.)
12. Answers may vary. Sample: Draw $\overline{T A}$ and $\overline{R P}$.
13. isosc. trapezoid $T R A P$ (Given)
14. $\overline{T A} \cong \overline{P R}$ (Diag. of an isosc. trap. are \cong.)
15. $\overline{T R} \cong \overline{P A}$ (Given)
16. $\overline{R A} \cong \overline{R A}$ (Refl. Prop. of \cong)
17. $\triangle T R A \cong \triangle P A R(\mathrm{SSS})$
18. $\angle R T A \cong \angle A P R(\mathrm{CPCTC})$
19. Draw $\overline{B I}$ as described, then draw $\overline{B T}$ and $\overline{B P}$.
20. $\overline{T R} \cong \overline{P A}$ (Given)
21. $\angle R \cong \angle A$ (Base \triangle of isosc. trap. are \cong.)
22. $\overline{R B} \cong \overline{A B}$ (Def. of bisector)
23. $\triangle T R B \cong \triangle P A B$ (SAS)
24. $\overline{B T} \cong \overline{B P}(\mathrm{CPCTC})$
25. $\angle R B T \cong \angle A B P$ (СРСТС)
26. $\angle T B I \cong \triangle P B I$ (Compl. of $\cong \triangleq$ are \cong.)
27. $\overline{B I} \cong \overline{B I}$ (Refl. Prop. of \cong)
28. $\triangle T B I \cong \triangle P B I$ (SAS)
29. $\angle B I T \cong \angle B I P$ (СРСТС)
30. $\angle B I T$ and $\angle B I P$ are rt. $₫ \leftrightarrow$. (\cong suppl. $₫ \leftrightarrow$ are rt. \mathscr{E}.)
31. $\overline{T I} \cong \overline{P I}$ (СРСТС)
32. $\overline{B I}$ is \perp bis. of $\overline{T P}$. (Def. of \perp bis.)

41-42. Check students' justifications. Samples are given.

41. It is one half the sum of the lengths of the bases; draw a diag. of the trap. to form 2Δ. The bases B and b of the trap. are each a base of a Δ. Then the segment joining the midpts. of the non-|| sides is the sum of the midsegments of the \mathbb{A}. This sum is $\frac{1}{2} B+\frac{1}{2} b=\frac{1}{2}(B+b)$.
42. It is one half the difference of the lengths of the bases. By the \triangle Midsegment Thm. and the $\|$ Post., midpoints L, M, N, and P are collinear. $M N=L N-L M=\frac{1}{2} B-\frac{1}{2} b$ $(\triangle$ Midsegment Thm. $)=\frac{1}{2}(B-b)$.

43. D is any point on $\overleftrightarrow{B N}$ such that $N D \neq B N$ and D is below N.
44. 45. $\overline{A B} \cong \overline{C B}, \overline{A D} \cong \overline{C D}$ (Given)
1. $\overline{B D} \cong \overline{B D}$ (Refl. Prop. of \cong)
2. $\triangle A B D \cong \triangle C B D$ (SSS)
3. $\angle A \cong \angle C$ (CPCTC)

