Practice 6-1

1. parallelogram
2. rectangle
3. quadrilateral
4. parallelogram, quadrilateral
5. kite, quadrilateral
6. rectangle, parallelogram, quadrilateral 7. trapezoid, isosceles trapezoid, quadrilateral 8. square, rectangle, parallelogram, rhombus, quadrilateral
7. $x=7$;
$A B=B D=D C=C A=11$
8. $m=9 ; s=42$;
$O N=L M=26 ; O L=M N=43$
9. $f=5 ; g=11$;
$F G=G H=H I=I F=17$
10. parallelogram
11. rectangle 14. kite 15. parallelogram

Practice 6-2

1. 15
2. 32
3. 7
4. 8
5. 12
6. 9
7. 8
8. $3 \frac{5}{8}$
9. 54
10. 34
11. 54
12. 34
13. 100
14. 40; 140; 40
15. 70;110; 70
16. $113 ; 45 ; 22$
17. $115 ; 15 ; 50$
18. $55 ; 105 ; 55$
19. $61 ; 72 ; 108 ; 32$
20. $32 ; 98 ; 50$
21. 16
22. 35
23. 28
24. 4

Practice 6-3

1. no
2. yes
3. yes
4. no
5. yes
6. yes
7. $x=2 ; y=3$
8. $x=6 ; y=3$
9. $x=64$;
$y=10 \quad$ 10. $x=8$; the figure is a \square because both pairs of opposite sides are congruent. 11. $x=40$; the figure is not a \square because one pair of opposite angles is not congruent. 12. $x=25$; the figure is a \square because the congruent opposite sides are \| by the Converse of the Alternate Interior Angles Theorem. 13. Yes; the diagonals bisect each other.
10. No; the congruent opposite sides do not have to be $\|$.
11. No; the figure could be a trapezoid. 16. Yes; both pairs of opposite sides are congruent. 17. Yes; both pairs of opposite sides are $\|$ by the converse of the Alternate Interior Angles Theorem. 18. No; only one pair of opposite angles is congruent. 19. Yes; one pair of opposite sides is both congruent and $\|$.
12. No; only one pair of

Practice 6-4

1a. rhombus
1b. $72 ; 54 ; 54 ; 72$
2a. rectangle
2b. 72; 36; 18; 144
3a. rectangle
3b. $37 ; 53 ; 106 ; 74$
4a. rhombus
4b. 59; 90; 90; 59
5a. rectangle
5b. $60 ; 30 ; 60 ; 30$
6a. rhombus
6b. $22 ; 68 ; 68 ; 90$
7. Yes; the parallelogram is a rhombus.
8. Possible; opposite angles are congruent in a parallelogram.
9. Impossible; if the diagonals are perpendicular, then the parallelogram should be a rhombus, but the sides are not of equal length.
10. $x=7 ; H J=7 ; I K=7$
11. $x=7 ; H J=26 ; I K=26 \quad$ 12. $x=6$;
$H J=25 ; I K=25 \quad$ 13. $x=-3 ; H J=13 ; I K=13$
14a. 90; 90; 29; 29 14b. $288 \mathrm{~cm}^{2}$ 15a. 70;90;70;70
15b. 88 in. ${ }^{2}$
16a. $38 ; 90 ; 90 ; 38$ 16b. $260 \mathrm{~m}^{2}$
17. possible 18. Impossible; because opposite angles are congruent and supplementary, for the figure to be a parallelogram they must measure 90 , the figure therefore must be a rectangle.

Practice 6-5

1. $118 ; 62$
2. $99 ; 81$
3. $59 ; 121$
4. $96 ; 84$
5. $101 ; 79$
6. $67 ; 113$
7. $x=4$
8. $x=16$;
$y=116$
9. $x=1$
10. $105.5 ; 105.5$
11. $90 ; 25$
12. 118; 118
13. $90 ; 63 ; 63$
14. $107 ; 107$
15. $90 ; 51 ; 39$
16. $x=8$
17. $x=7$
18. $x=28 ; y=32$

Practice 6-6

1. $(1.5 a, 2 b) ; a \quad$ 2. $(1.5 a, b) ; \sqrt{a^{2}+4 b^{2}} \quad$ 3. $(0.5 a, 0) ; a$ 4. $(0.5 a, b) ; \sqrt{a^{2}+4 b^{2}} \quad$ 5. $0 \quad$ 6. $1 \quad$ 7. $-\frac{1}{2}$
2. 2
3. $\frac{2 b}{3 a}$
4. $-\frac{2 b}{3 a}$
5. $\frac{2 b}{3 a}$
6. $-\frac{2 b}{3 a}$
7. $E(a, 3 b) ; I(4 a, 0) \quad$ 14. $O(3 a, 2 b) ; M(3 a,-2 b)$;
$E(-3 a,-2 b)$
8. $D(4 a, b) ; I(3 a, 0)$
9. $T(0,2 b)$;
$A(a, 4 b) ; L(2 a, 2 b)$
10. $(-4 a, b)$
11. $(-b, 0)$

Practice 6-7

1a. $\frac{p}{q} \quad$ 1b. $y=m x+b ; q=\frac{p}{q}(p)+b ; b+q-\frac{p^{2}}{q}$;
$y=\frac{p}{q} x+q-\frac{p^{2}}{q} \quad$ 1c. $x=r+p \quad$ 1d. $y=\frac{p}{q}(r+p)$
$+q-\frac{p^{2}}{q} ; y=\frac{r p}{q}+\frac{p^{2}}{q}+q-\frac{p^{2}}{q} ; y=\frac{r p}{q}+q ;$
intersection at $\left(r+p, \frac{r p}{q}+q\right) \quad$ 1e. $\frac{r}{q} \quad$ 1f. (r, q)
1g. $y=m x+b ; q=\frac{r}{q}(r)+b ; b=q-\frac{r^{2}}{q}$;
$y=\frac{r}{q} x+q-\frac{r^{2}}{q} \quad$ 1h. $y=\frac{r}{q}(r+p)+q-\frac{r^{2}}{q}$;
$y=\frac{r^{2}}{q}+\frac{r p}{q}+q-\frac{r^{2}}{q} ; y=\frac{r p}{q}+q$; intersection at
$\left(r+p, \frac{r p}{q}+q\right) \quad$ 1i. $\left(r+p, \frac{r p}{q}+q\right) \quad$ 2a. $(-2 a, 0)$
2b. $(-a, b) \quad$ 2c. $\left(-\frac{3 a}{2}, \frac{b}{2}\right) \quad$ 2d. $\frac{b}{a}$
3a. ($-4 a, 0$)
3b. $(-2 a, 3 a)$
3c. $\frac{3}{2}$
3d. $(2 a,-a)$
3e. $\frac{1}{2} \quad$ 4. The coordinates for D are $(0,2 b)$. The coordinates for C are $(2 a, 0)$. Given these coordinates, the lengths of $\overline{D C}$ and $\overline{H P}$ can be determined:
$D C=\sqrt{(2 a-0)^{2}+(0-2 b)^{2}}=\sqrt{4 a^{2}+4 b^{2}} ;$
$H P=\sqrt{(0-2 a)^{2}+(0-2 b)^{2}}=\sqrt{4 a^{2}+4 b^{2}}$;
$D C=H P$, so $\overline{D C} \cong \overline{H P}$.

Reteaching 6-1

1.-4. Samples:
1.

2.

3.

rhombus

5. parallelogram
6. rectangle
7. rhombus
8. trapezoid
9. square

Reteaching 6-2

1. Statements

1. Parallelogram $A B C D$
2. $\overline{A B} \cong \overline{C D}, \overline{B C} \cong \overline{D A}$
3. $\overline{B D} \cong \overline{D B}$
4. $\triangle A B D \cong \triangle C D B$
5. $\angle A \cong \angle C$
6. Statements
7. Parallelogram $A C D E$; $\overline{C D} \cong \overline{B D}$
8. $\angle C \cong \angle E$
9. $\angle C B D \cong \angle C$
10. $\angle C B D \cong \angle E$
11. Statements
12. Parallelogram $A C D E$;
$\overline{A E} \cong \overline{B D}$
13. $\overline{A E} \cong \overline{C D}$
14. $\overline{C D} \cong \overline{B D}$
15. $\angle C B D \cong \angle C$

4. Statements

1. Parallelogram $A C D E$;
$\angle C B D \cong \angle E$
2. $\angle E \cong \angle C$
3. $\angle C B D \cong \angle C$
4. $\overline{C D} \cong \overline{B D}$
5. $\triangle B D C$ is isosceles.

5. Statements

1. Isosceles trap. $A B D E$;
2. $\frac{\angle C}{A E} \cong \angle E$ $\angle E \cong \angle B D E$
3. $\angle C \cong \angle B D E$
4. $\angle C B D \cong \angle B D E$
5. $\angle C \cong \angle C B D$
6. $\triangle B C D$ is isosceles.
7. $\overline{B D} \cong \overline{C D}$
8. $\overline{A E} \cong \overline{C D}$

Reasons

1. Given
2. Opposite sides of a parallelogram are congruent.
3. Reflexive Prop. of \cong
4. SSS
5. СРСТС

Reasons

1. Given
2. Opposite angles of a parallelogram are \cong.
3. Isosceles Triangle Theorem
4. Substitution

Reasons

1. Given
2. Opposite sides of a parallelogram are \cong.
3. Substitution
4. Isosceles Triangle Theorem

Reasons

1. Given
2. Opposite angles of a parallelogram are \cong.
3. Substitution
4. If $2 \angle \mathrm{~s}$ of a \triangle are \cong, sides opposite them are \cong.
5. Def. of isosceles triangle

Reasons

1. Given
2. Definition of isosceles trapezoid
3. Transitive Property
4. Alt. int. \angle 's are \cong.
5. Transitive Property
6. Definition of isosceles triangle
7. Definition of isosceles triangle
8. Transitive Property

Reteaching 6-3

1. no
2. no
3. no
4. yes
5. Statements

Reasons

1. $\overline{B D} \cong \overline{C D}, \overline{A E} \cong \overline{B D}$,
$\overline{A E} \| \overline{C D}$
2. $\overline{A E} \cong \overline{C D}$
3. $A C D E$ is a parallelogram.
4. Statements
5. $\frac{\angle C B D \cong \angle C,}{\overline{A E} \cong \overline{B D}, \overline{A C} \cong \overline{E D}}$
6. $\overline{B D} \cong \overline{C D}$
7. $\overline{A E} \cong \overline{C D}$
8. $A C D E$ is a
parallelogram.

Reteaching 6-4

1. $m \angle 1=60 ; m \angle 2=30 ; m \angle 3=90$
2. $m \angle 1=80$;
$m \angle 2=50 ; m \angle 3=50 ; m \angle 4=100$
3. $m \angle 1=80$;
$m \angle 2=100 ; m \angle 3=40 ; m \angle 4=40$
4. $m \angle 1=60$;
$m \angle 2=60 ; m \angle 3=60$
5. $m \angle 1=75 ; m \angle 2=75$;
$m \angle 3=15 ; m \angle 4=90$
6. $m \angle 1=45 ; m \angle 2=45$

Reteaching 6-5

1. 90
2. 52
3. 90
4. 38
5. 52
6. 90
7. 27
8. 63
9. 27
10. Sample:

Statements

Reasons

1. $\overline{L P} \cong \overline{M N}$
2. Given
3. $\angle L P N \cong \angle M N P$
4. Theorem $6-15$
5. $\overline{P N} \cong \overline{P N}$
6. Reflexive Prop. of \cong
7. $\triangle L N P \cong \triangle M P N$
8. SAS Postulate
9. $\overline{P M} \cong \overline{L N}$
10. СРСТС
11. $\overline{L M} \cong \overline{L M}$
12. Reflexive Prop. of \cong
13. $\triangle P L M \cong \triangle N M L$
14. SSS Postulate
15. $\angle L P Q \cong \angle M N Q$
16. СРСТС
17. $\angle L Q P \cong \angle M Q N$
18. Vertical angles are \cong.
19. $\triangle L Q P \cong \triangle M Q N$
20. AAS Theorem
21. 87
22. 48 13. 45
23. 48
24. 24
25. 24
26. 132
27. 24
28. 132
29. Sample:

Both $\triangle L M Q$ and $\triangle P N Q$ have the same angle measures, but their sides have different lengths.

Reteaching 6-6

1. $Q(x+k, m)$ 2. $X(-a, 0) ; W(0,-b)$ 3. $S(a,-a)$; $T(0,-a)$ 4. Each side has length $a \sqrt{2}$, so it is a rhombus. One pair of opposite sides has slope of 1 , and the other pair has slope of -1 . Therefore, because $(1)(-1)=-1$, the rhombus has four right angles and is a square. 5. Each side

Chapter 6 Answers (continued)

has length of $\sqrt{2 a^{2}}+2 a+1$. Therefore, the figure is a rhombus.
6. $C(x-k, m)$

Reteaching 6-7

1. Each diagonal has length $\sqrt{c^{2}+(b+a)^{2}}$. 2. The midpoints are $\left(\frac{b}{2}, \frac{c}{2}\right)$ and $\left(\frac{b+a}{2}, \frac{c}{2}\right)$. The line connecting the midpoints has slope of 0 and is therefore parallel to the third side. 3. The midpoints are $\left(\frac{a}{2}, 0\right),\left(a, \frac{b}{2}\right),\left(\frac{a}{2}, b\right)$ and $\left(0, \frac{b}{2}\right)$. The segments joining the midpoints each have length $\frac{1}{2} \sqrt{a^{2}+b^{2}}$. 4. The midpoints are $\left(\frac{a}{2}, \frac{b}{2}\right),\left(-\frac{a}{2}, \frac{b}{2}\right)$, $\left(-\frac{a}{2},-\frac{b}{2}\right)$, and $\left(\frac{a}{2},-\frac{b}{2}\right)$. The quadrilateral formed by these points has sides with slopes of 0,0 , undefined, and undefined. Therefore, the sides are vertical and horizontal, and consecutive sides are perpendicular. 5. The median meets the base at $(0,0)$, the midpoint of the base. Therefore, the median has undefined slope; i.e., it is vertical. Because the base is a horizontal segment, the median is perpendicular to the base.
2. The midpoints are $\left(\frac{a}{2}, 0\right),\left(\frac{a+d}{2}, \frac{e}{2}\right),\left(\frac{b+d}{2}, \frac{c+e}{2}\right)$, and $\left(\frac{b}{2}, \frac{c}{2}\right)$. One pair of opposite sides has slope of $\frac{e}{d}$, and the other pair of opposite sides has slope of $\frac{c}{b-a}$. Therefore, the figure is a parallelogram because opposite sides are parallel.

Enrichment 6-1

1. Some
2. No
3. Some
4. All
5. No
6. Some
7. No
8. Some
9. All
10. Some
11. Some
12. No
13. No
14. Some
15. All
16. All
17. Some
18. No
19. Some
20. All

Enrichment 6-2

1. $A B E D, B C F E, D E H G, E F I H, A C I G, D B F H$ 2. $A B E D, B C F E, D E H G, E F I H, A C I G, D B F H, A C F D$, DFIG, $A B H G, B C I H \quad$ 3. $A B E D, B C F E, D E H G$, EFIH, ACIG, DBFH, ACFD, DFIG, ABHG, BCIH, AEHD, DBEG, BFIE, ECFH, BFEA, BCED, EFHG,
$D E I H$ 4. $D B H G, E C I H, A D E C, E A C F, A B H D$, BCIE, HDFI, GDFH, BCGD, GCFH, DAIH, ABFI
2. pentagon, scalene triangle, two rectangles, two trapezoids, two isosceles right triangles
3.

Enrichment 6-3

1a. Given
1b. Definition of a regular hexagon
1c. SAS
1d. СРСТС
1e. Given any two distinct
points, there is a unique line segment with these points as
endpoints. 1f. Definition of a diagonal 1g. Definition of a regular hexagon 1h. Reflexive Property of Congruence 1i. SSS $\mathbf{1 j}$. CPCTC $\mathbf{1 k}$. If two lines and a transversal form alternate interior angles that are congruent, then the two lines are parallel. 11. Definition of a regular hexagon 1m. SAS 1n. CPCTC 10. Definition of a regular hexagon 1p. SSS

1q. СРСТС 1r. If two lines and a transversal form alternate interior angles that are congruent, then the two lines are parallel. 1s. Definition of a parallelogram 2. A parallelogram can be constructed in an octagon by drawing the diagonals as shown. Other answers are possible.

Enrichment 6-4

1. 2.24 cm ; $J B C K$ is a square, so $B C=B J=2.4 \mathrm{~cm}$. Because $A J=A B-B J, A J=4.64-2.4=2.24 \mathrm{~cm}$. 2. $44 ; L M N O$ is a rhombus, so $\overline{M O} \perp \overline{L N}$. So $m \angle M R L=90$ and $m \angle M L R=46$; therefore $m \angle M L R=44$. 3. 2.24 cm ; because $m \angle A M L=46=$ $m \angle M L R, \overline{A J} \| \overline{L N}$. So $A J L N$ is a parallelogram, and $A J=$ $L N=2.24 \mathrm{~cm}$. 4. 2.4 cm ; because $m \angle M L A=44=$ $m \angle L M R, \overline{A D} \| \overline{M O} . A M O D$ therefore is a parallelogram, so $M O=A D=2.4 \mathrm{~cm}$. 5. 44; because $m \angle L M R=$ $m \angle R M N, m \angle R M N=44$. 6. 90 ; because $J B C K$ is a square, $m \angle B J K=90$. Because $m \angle B J K+m \angle N J M=180$, $m \angle N J M=90 . \quad$ 7. $88 ; m \angle L M R+m \angle R M N=$ $m \angle L M N=88$. 8. No; the base angles of the triangle are not congruent.
2. parallelogram
3. rhombus
4. square 12. rectangle

Enrichment 6-5

$\begin{array}{ll}\text { 1. } 64 \text { square units } & \text { 2. } 65 \text { square units } \quad \text { 3. When you }\end{array}$ actually cut out the shapes and reassemble them, you find that the "diagonal" of the rectangle is not a straight line. Trapezoid IV does not quite meet the top edge of triangle I, and similarly there is a space between trapezoid III and triangle II. The extra space represents the extra one square unit of area.
4. The areas differ by 4 square inches.

Enrichment 6-6

1.-9.

10. $\left(5 ; 60^{\circ}\right)$
11. $\left(1 ; 300^{\circ}\right)$
12. $\left(3.5 ; 225^{\circ}\right)$
13. $\left(6 ; 150^{\circ}\right)$
14. $\left(4 ; 315^{\circ}\right)$
15. $\left(5 ; 120^{\circ}\right)$
16. $\left(2 ; 90^{\circ}\right)$
17. $\left(5 ; 255^{\circ}\right)$
18. $\left(1 ; 180^{\circ}\right)$

Enrichment 6-7

1. $(0,7)$
2. $(0,1)$
3. $(5,1)$
4. $(5,7)$
5. The x-coordinate of each point decreased by 4 .
6. $(7,0)$
7. $(-3,-5)$
8. $(-1.5,-2.5)$
9. Add 3
to the y-coordinate. 10. The y-coordinate of each point decreased by 3 . 11. The y-coordinate decreased by 3 .
10. $(3,4)$
11. $M(10,6), N(2,6)$
12. rectangle
13. Either all the x-coordinates or all the y-coordinates change by a constant amount.

Chapter Project

Activity 1: Doing

Check students' work.

Activity 2: Analyzing

1. The effective area is rectangular.
2. The effective area is rectangular. The effective area is larger in Figure 2 than in Figure 1 because the diagonal is longer than the face.
3. You should tie the string to a vertical stick of the kite.
4. If the faces of the kite were unchanged, one diagonal of the rhombus is longer than the diagonals of the square, so the effective area would increase.

Activity 3: Researching
Check students' work.

\checkmark Checkpoint Quiz 1

1. $70,110,70$
2. $53,53,52$
3. $96,84,46$
4. square
5. $x=20, y=3$
6. $x=2, y=5$
7. 30.5

\checkmark Checkpoint Quiz 2

1. $x=66, y=57$
2. $x=35, y=35$
3. $x=3$,
$y=4 \quad$ 4. True; they are the only quadrilaterals that possess these properties.
4. False; only two triangles at a time are congruent.
5. $(n+1, m)$ 7. $(k, 0)$
6. $(n+1, m)$ 7. $(k, 0)$

Chapter Test, Form A

1.

2.

rhombus
3.

rectangle
4.

kite
5. 5 cm
6. 3 in .
7. 4 m
8. 20
9. $x=33$;
$y=81$
10. 10
11. 20
12. $x=30 ; y=30$
13. 12 14. $D(a, 0) ; E(b, c) ;\left(\frac{a+b}{2}, \frac{c}{2}\right)$ 15. $D(-c, 0)$;
$E(0, b) ;\left(-\frac{c}{2}, \frac{b}{2}\right) \quad$ 16. $D(0, b) ; E(a, 0) ;\left(\frac{a}{2}, \frac{b}{2}\right) \quad$ 17. $28 ; 28$
18. 105; 75
19. $90 ; 48$
20. 55; 90
21. 22; 68
22. 53;37 23. The lengths of segments $\overline{A B}, \overline{B C}$, and $\overline{A C}$ are:
$A B=\sqrt{j^{2}+k^{2}}, B C=\sqrt{k^{2}+l^{2}}, A C=l+j$. Thus,

Chapter 6 Answers (continued)

the perimeter of $\triangle A B C$ is $l+j+\sqrt{j^{2}+k^{2}}+\sqrt{k^{2}+l^{2}}$. The midpoints of segments $\overline{A B}, \overline{B C}$, and $\overline{A C}$ are: $M\left(-\frac{j}{2}, \frac{k}{2}\right)$, $N\left(\frac{l}{2}, \frac{k}{2}\right), O\left(\frac{l-j}{2}, 0\right)$. The lengths of segments $\overline{M N}, \overline{N O}$, and $\overline{M O}$ are: $M N=\frac{1}{2}(l+j), N O=\frac{1}{2} \sqrt{j^{2}+k^{2}}$, $M O=\frac{1}{2} \sqrt{k^{2}+l^{2}}$. Thus, the perimeter of $\triangle M N O$ is $\frac{1}{2}\left(l+\mathrm{j}+\sqrt{j^{2}+k^{2}}+\sqrt{k^{2}+l^{2}}\right)$, which is half the $\begin{array}{ll}\text { perimeter of } \triangle A B C . & \text { 24. parallelogram } \\ \text { 25. kite }\end{array}$
26. rectangle
27. parallelogram
28. square
29. rhombus
30. isosceles trapezoid

Chapter Test, Form B

1.

2.

3.

4.

5. 7 in. 6.6 cm 7. 22 m 8. $x=3.5$ 9. $x=19 ; y=123$
10. $x=6$
11.78;102
12. $90 ; 61$
13. $64 ; 128$
14. $90 ; 63 ; 27$
15. $90 ; 45 ; 45$ 16. 71;71;38 17. parallelogram 18. rhombus
19. trapezoid 20. square

Alternative Assessment, Form C

TASK 1: Scoring Guide
Samples:
a. $\overline{A B} \cong \overline{C D}, \overline{B C} \cong \overline{A D}, \overline{A B}\|\overline{C D}, \overline{B C}\| \overline{A D}$,
$\angle A B D \cong \angle B D C, \angle A C D \cong \angle B A C, \angle C B D \cong \angle B D A$,
$\angle C A D \cong \angle B C A, B E=E D, A E=E C$,
$\angle A B C \cong \angle C D A, \angle B C D \cong \angle B A D$,
b. C, E, F

3 Student lists all statements accurately in part a and gives the correct answers in part b.
2 Student gives mostly correct answers but with some errors.
1 Student gives answers that fail to demonstrate understanding of the properties of parallelograms.
0 Student makes little or no effort.
TASK 2: Scoring Guide

3 Student gives accurate and complete answers and diagram.
2 Student gives answers and a diagram that are mostly accurate.
1 Student gives answers or a diagram containing significant errors.
0 Student makes little or no effort.

TASK 3: Scoring Guide

$x=90$ (Diagonals of a kite are \perp.)
$y=5$ (Def. of isos. trapezoid)
$z=75$ (Base angles of isos. trap. are \cong.)
3 Student gives correct answers and reasons.
2 Student gives mostly correct answers and reasons.
1 Student gives mostly incorrect answers and reasons.
0 Student makes little or no effort.
TASK 4: Scoring Guide
a. $Q=(5-a, 5) ; S=(5,5-a) \quad$ b. Slope of
$\overline{P R}=\frac{5-0}{5-0}=1$. Slope of $\overline{Q S}=\frac{5-a-5}{5-(5-a)}=-1$.
Because the product of their slopes $=-1, \overline{P R} \perp \overline{Q S}$.
3 Student gives correct coordinates and a valid proof.
2 Student gives answers or a proof that contains minor errors.
1 Student gives incorrect coordinates in part a or a poorly constructed proof in part b.
0 Student makes little or no effort.

Chapter 6 Answers (continued)

Cumulative Review

1. B
2. J
3. B
4. H
5. D
6. J
7. A 8. G 9. B 10. G 11. B
$\begin{array}{llll}\text { 12. } \mathrm{J} & \text { 13. } \mathrm{A} & \text { 14. } 10 & \text { 15. } 38,50,92\end{array}$
8. Proof: $\overline{A B} \cong \overline{B C} \cong \overline{D C} \cong \overline{A D}$ by the definition of a rhombus. Also, $\overline{A C} \cong \overline{A C}$. Therefore, $\triangle A B C \cong \triangle C D A$ by the SSS Theorem.

9.

18.

19. Sample: The construction of the undercarriage of a bridge;
it is a combination of triangles, which are the strongest
geometric polygon.

