Answers for Lesson 7-4, pp. 394–396 Exercises

2. $2\sqrt{10}$

4. 12

6. 25

10. *r*

14. *b*

16. 20

20. 60

18. $6\sqrt{3}$

12. *a*; *a*

8. $3\sqrt{7}$

- **1.** 6
- 3. $4\sqrt{3}$
- 5. $14\sqrt{2}$
- 7. $6\sqrt{6}$
- **9.** *s*
- **11.** *c*
- **13.** *h*
- **15.** 9
- **17.** 10
- **19.** 12
- **21.** a. 18 mi
 - **b.** 24 mi
- **22.** *KNL*; *JNK*
- **23. a.** 4 cm

b.

- **c.** Answers may vary. Sample: Draw a 10-cm segment. 2 cm from one endpoint, construct a \perp of length 4 cm. Connect to form a \triangle .
- 24. a.

- **b.** They are =. Explanations may vary. Sample: The altitude and hyp. segments are \cong sides of two isosc. \triangle .
- **25.** (10, 6), (-2, 6)

26. $4\sqrt{3}$

27. 14

28. 2

Answers for Lesson 7-4, pp. 394–396 Exercises (cont.)

29.
$$\sqrt{14}$$

30. 1

32. $10\sqrt{10}$

34.
$$x = 12; y = 3\sqrt{7};$$
 $z = 4\sqrt{7}$

35.
$$x = 12\sqrt{5}; y = 12;$$
 $z = 6\sqrt{5}$

36.
$$x = 4; y = 2\sqrt{13};$$
 $z = 3\sqrt{13}$

37.
$$12\sqrt{2}$$

39.
$$\ell_1 = \sqrt{2}, \ell_2 = \sqrt{2}, a = 1, h_2 = 1$$

40.
$$\ell_1 = 2\sqrt{13}, \ell_2 = 3\sqrt{13}, h = 13, a = 6$$

41.
$$\ell_1 = \ell_2 = 6\sqrt{2}, h = 12, h_2 = 6$$

42.
$$\ell_2 = 2\sqrt{3}, h = 4, a = \sqrt{3}, h_1 = 1$$

43.
$$\ell_1 = 5, a = \frac{60}{13}, h_1 = \frac{25}{13}, h_2 = \frac{144}{13}$$

44.
$$\ell_2 = \frac{4\sqrt{7}}{3}, h = \frac{16}{3}, a = \sqrt{7}, h_2 = \frac{7}{3}$$

45.
$$\ell_1 = 8\sqrt{5}, \ell_2 = 4\sqrt{5}, h_1 = 4, h_2 = 20$$

Property, $\frac{1}{2}AB^2 = x^2$, so $AB = x\sqrt{2}$.

46.
$$\ell_1 = 6, h = 12, a = 3\sqrt{3}, h_2 = 9$$

47. C is equidistant from A and B so C is on the \bot bisector of \overline{AB} (\bot Bis. Thm.) which thus must be \overline{CM} , the altitude to the hypotenuse. Since M is the midpoint of \overline{AB} , $AM = \frac{1}{2}AB$. Also, by Corollary 2 to Thm. 7-3, x is the geometric mean of AM and AB, so $\frac{\frac{1}{2}AB}{x} = \frac{AM}{x} = \frac{x}{AB}$. By the Cross-Product

© Pearson Education, Inc., publishing as Pearson Prentice Hall. All rights reserved

- **48.** As in Exercise 47, the altitude to the hypotenuse CM is the \perp bisector of \overline{AB} . Thus AM = 10 and AB = 20 = BC = CA. By Corollary 1 to Thm. 7-3, BC is the geometric mean of MB and BD, so $\frac{MB}{BC} = \frac{BC}{BD} = \frac{BC}{MB + MD}$. Substitute in the values for BC and MB and solve for MD. By the Cross-Product Property, $10(10 + MD) = 20^2$, so MD = 30. By Corollary 1 to Thm. 7-3, h is the geometric mean of MB and MD, so $\frac{MB}{h} = \frac{h}{MD}$, $h^2 = 300$, and $h = 3\sqrt{10}$.
- **49.** 3

50. 4

51. 4.5

52. a.

Given: rt. $\triangle ABC$ with alt. \overline{CD} ; Prove: $AC \cdot BC = AB \cdot CD$

- **b.** Yes; $AC \cdot BC = 2 \times \text{area } \triangle ABC$ and $AB \cdot CD = 2 \times \text{area } \triangle ABC$.
- **53.** a. By Corollary 2 to Thm. 7-3, $\frac{c}{a} = \frac{a}{r}$ and $\frac{c}{b} = \frac{b}{q}$. Combined with c = q + r, the resulting system can be reduced to $c^2 = a^2 + b^2$
 - **b.** The square of the hypotenuse of a right triangle is equal to the sum of the squares of the legs of the triangle.
- **54.** As in Exercise 47, the altitude to the hypotenuse CM is the \perp bisector of AB. Thus, AM = MB = x and AB = 2x =BC = CA. By Corollary 1 to Thm. 7-3, BC is the geometric mean of MB and BD, so $\frac{x}{2x} = \frac{2x}{BD} = \frac{2x}{x + MD}$. By the Cross-Product Property, $x(x + MD) = 4x^2$, so MD = 3x. By Corollary 1 to Thm. 7-3, h is the geometric mean of MB and MD, so $\frac{x}{h} = \frac{h}{3x}$, $h^2 = 3x^2$, and $h = 3\sqrt{x}$.