Answers for Lesson 7-5, pp. 400-404 Exercises

- **1.** 7.5
- **3.** 5.2
- **5.** *c*
- **7.** *d*
- **9.** $3\frac{1}{3}$
- **11.** 6
- **13.** 35
- **15.** $\frac{40}{7}$
- **17.** *KS*
- **19.** *JP*
- **21.** *KM*
- **23.** *JP*
- **25.** 559 ft

- **2.** 8
- **4**. *d*
- **6.** *b*
- **8.** 7.5
- **10.** 9.6
- **12.** 4.8
- **14.** 3.6
- **16.** 12
- **18.** *SQ*
- **20.** *KP*
- **22.** *PM*
- **24.** *LW*
- **26.** 671 ft
- **27.** 2.4 cm and 2.6 cm; 3.3 cm and 8.7 cm; 3.8 cm and 9.2 cm
- 28. Answers may vary. Sample: 9 cm and 13.5 cm
- **29.** x = 18 m; y = 12 m
- 30. a.

b. isosceles; \triangle - \angle Bisector Thm.

- **31.** 20
- **32.** 2.5
- **33.** $\frac{2}{7}$, 3

Pearson Education, Inc., publishing as Pearson Prentice Hall. All rights reserved.

- 34. a. Given
 - **b.** Prop. of Proportions
 - **c.** Segment Add. Post.
 - **d.** Reflexive Prop. of \cong
 - **e.** $SAS \sim Thm$.
 - **f.** Corr. \angle s of $\sim \triangle$ are \cong .
 - **g.** If corr. \angle s are \cong , lines are \parallel .
- **35.** a. $\frac{AB}{BC}$
 - **b.** $\frac{WX}{XY}$
 - **c.** $\frac{AB}{BC} = \frac{WX}{XY}$
- **36.** Yes; since $\frac{6}{10} = \frac{9}{15}$, the segments are \parallel by the Converse of the Side-Splitter Thm.
- **37.** No; $\frac{28}{12} \neq \frac{24}{10}$.
- **38.** Yes; since $\frac{15}{12} = \frac{20}{16}$, the segments are \parallel by the Converse of the Side-Splitter Thm.
- **39.** Measure \overline{AC} , \overline{CE} , and \overline{BD} . Use the Side-Splitter Thm. Write the proport. $\frac{AC}{CE} = \frac{AB}{BD}$ and solve for AB.
- **40.** 4.5 cm or 12.5 cm
- **41.** 6

42. 2.5

- **43.** 19.5
- **44.** The two segments are x and y. $\frac{x}{y} = \frac{ks}{s} = k$, so x = ky.

Answers for Lesson 7-5, pp. 400-404 Exercises (cont.)

- **45.** a. A midsegment of a \square connects the midpts. of 2 opp. sides.
 - b.

Given: $\Box ABCD$ with \overline{EF} connecting the midpts. of \overline{AD} and \overline{BC} Prove: $\overline{AB} \parallel \overline{EF}$; $\overline{EF} \parallel \overline{CD}$

- **1.** $\square ABCD$ (Given)
- **2.** $\overline{AE} \parallel \overline{BF}$ and $\overline{ED} \parallel \overline{FC}$ (Def. of \Box)
- **3.** $\overline{AD} \cong \overline{BC}$ (Opp. sides of \square are \cong .)
- **4.** E and F are midpts. of \overline{AD} and \overline{BC} . (Given)
- **5.** $AE = ED = \frac{1}{2}AD; BF = FC = \frac{1}{2}BC$ (Def. of midpt.)
- **6.** AE = BF, ED = FC (Subst.)
- **7.** ABFE and EFCD are \square (If one pair of opp. sides of a quad. is \cong and \parallel , it is a \square .)
- **8.** $\overline{AB} \parallel \overline{EF}$ and $\overline{EF} \parallel \overline{CD}$ (Opp. sides of a \square are \parallel .)

C.

Geometry

Given: $\square ABCD$ with midsegment \overline{EF} Prove: \overline{EF} bisects \overline{AC} and \overline{BD} . Since $\overline{AB} \parallel \overline{EF} \parallel \overline{DC}$ by part (b), and \overline{EF} bisects \overline{AD} , by the Side-Splitter Thm., \overline{EF} bisects \overline{AC} and \overline{BD} .

- © Pearson Education, Inc., publishing as Pearson Prentice Hall. All rights reserved
- 46. If a ray passes through the vertex of an angle of a triangle and splits the opposite side into segments that are proportional to the other two sides of the triangle, then the ray bisects the angle. Explanations may vary. Sample: Refer to diagram in proof of Theorem 7-5, p. 400. It is given that $\frac{CD}{DB} = \frac{CA}{BA}$, and by the Side-Splitter Thm., $\frac{CD}{DB} = \frac{CA}{AF}$, so BA = AF. $\triangle ABF$ is isosceles by the Isos. Triangle Thm., so $\angle 3 \cong \angle 4$. $\angle 2 \cong \angle 4$ by the Alt. Int. Angles Thm., and $\angle 1 \cong \angle 3$ by the Corr. Angles Thm., so by substitution, $\angle 1 \cong \angle 2$, and therefore \overline{AD} bisects $\angle CAB$.
- **47**. **a**. 14
 - **b.** 11

Geometry Chapter 7 171