2. 7

3. 34

4. 12

5. 65

6. 8

7. No; $4^2 + 5^2 \neq 6^2$.

8. Yes; $10^2 + 24^2 = 26^2$.

9. Yes; $15^2 + 20^2 = 25^2$.

10. $\sqrt{41}$

11. $\sqrt{33}$

12. $3\sqrt{11}$

13. $2\sqrt{89}$

14. $3\sqrt{2}$

15. $5\sqrt{2}$

16. a. 14.1 ft

17. 17.0 m

b. about 2.3 ft

18. No; $19^2 + 20^2 \neq 28^2$.

19. No; $8^2 + 24^2 \neq 25^2$.

20. Yes; $33^2 + 56^2 = 65^2$.

21. acute

22. obtuse

23. acute

24. obtuse

25. right

26. acute

27. 10

28. $8\sqrt{5}$

29. $2\sqrt{2}$

30. Answers may vary. Sample: Have three people hold the rope 3 units, 4 units, and 5 units apart in the shape of a triangle.

31. B

32. 4.2 in.

33. Yes; $7^2 + 24^2 = 25^2$, so $\angle RST$ is a rt. \angle .

Answers for Lesson 8-1, pp. 420-423 Exercises (cont.)

34. a.
$$|x_2 - x_1|$$
; $|y_2 - y_1|$

b.
$$PQ^2 = (x_2 - x_1)^2 + (y_2 - y_1)^2$$

c.
$$PQ = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

- **35.** Answers may vary. Sample: Using 2 segments of length 1, construct the hyp. of the right \triangle formed by these segments. Using the hyp. found as one leg and a segment of length 1 as the other leg, construct the hyp. of the \triangle formed by those legs. Continue this process until constructing a hypotenuse of length \sqrt{n} .
- **36.** 29
- **37.** 50
- **38.** 84
- **39.** 35
- 40-47. Answers may vary. Samples are given.
- **40.** 6; 7

41. 4; 5

42. 8; 11

43. 11; 12

44. 8; 10

45. 14; 16

46. 18; 19

- **47.** 39; 42
- **48.** $\frac{r}{a} = \frac{a}{c}$ and $\frac{q}{b} = \frac{b}{c}$. So $a^2 = rc$ and $b^2 = qc$. $a^2 + b^2 = rc + qc = (r+q)c = c^2$
- **49.** 2830 km

50. 12 cm

51. 12.5 cm

- **52.** 17.9 cm
- **53. a.** Answers may vary. Sample: n = 6; 12, 35, 37

b.
$$12^2 + 35^2 = 37^2$$

c.
$$(2n)^2 + (n^2 - 1)^2$$

= $4n^2 + n^4 - 2n^2 + 1$
= $n^4 + 2n^2 + 1$
= $(n^2 + 1)^2$

- **54. a.** 5 in.
 - **b.** $\sqrt{29}$
 - c. $d_2 = \sqrt{BD^2 + AC^2 + BC^2}$
 - **d.** 34 in.
- **55.** $\sqrt{14}$

56. $\sqrt{61}$

- **57.** $\sqrt{17}$
- **58.** Draw right $\triangle FDE$ with legs \overline{DE} of length a and \overline{EF} of length b and hyp. of length x. Then $a^2 + b^2 = x^2$ by the Pythagorean Thm. We are given $\triangle ABC$ with sides of length a, b, c and $a^2 + b^2 = c^2$. By subst., $c^2 = x^2$, so c = x. Since all side lengths of $\triangle ABC$ and $\triangle FDE$ are the same, $\triangle ABC \cong \triangle FDE$ by SSS. $\angle C \cong \angle E$ by CPCTC, so $m \angle C = 90$. Therefore, $\triangle ABC$ is a right \triangle .

© Pearson Education, Inc., publishing as Pearson Prentice Hall. All rights reserved.