Answers for Lesson 9-4, pp. 494–496 Exercises

1. line; rotational: 180°

2. line

3. rotational: 90°

4. line, rotational: 60°

- **5.** rotational: 180°
- **6.** no symmetry
- **7.** no symmetry
- **8.** rotational: any angle; line: any line passing through the center
- **9.** rotational: 60°
- **10.** line

11. line, rotational: 180°

12. line, rotational: 90°

13.

14.

© Pearson Education, Inc., publishing as Pearson Prentice Hall. All rights reserved.

15.

16.

- **17.** rotational and reflectional **18.** reflectional
- 19-20. Answers may vary. Samples are given.
- 19. CODE, HOOD, DOCK
- 20. TOMATO, HOAX, WAXY
- 21. a. Language Horz. Vert. **Point** line line **English** B, C, D, E, A, H, I, M, H, I, N, O H, I, K, O, X S, X, Z O, T, U, V, **W**, **X**, **Y** Greek $A, \Delta, H,$ B, E, H, Θ **Ζ**, **H**, **Θ**, **I**, I, K, Ξ, O, Θ , I, Λ , N, Ξ, Ο, Ф, Х Σ, Φ, Χ M, Ξ, O, П, Т, Ү, Φ, X, Ψ, Ω
 - **b.** Answers may vary. Sample: Greek; Greek alphabet has more letters with at least one kind of symmetry and more letters with multiple symmetries.

22–23. Sketches may vary.

- **22.** reflectional
- 23. rotational: 90°; reflectional
- **24.** Answers may vary. Sample: $30 \div 10 = 3$; |8 1| = |1 8|, 80 + 3 < 88; $\frac{80}{80} = \frac{33}{33}$
- **25.** reflectional; rotational **26.** reflectional
- **27.** point **28.** none
- **29.** reflectional; rotational **30.** reflectional
- **31.** reflectional, rotational **32.** reflectional
- **33.** Yes; the bisector divides the \angle into $2 \cong \angle$ s with one side of the \angle being the reflection of the other.
- **34.** Not necessarily; the \triangle would need the two other \triangle to be \cong .

- **35.** Not necessarily; the bisector divides the segment into $2 \cong$ parts but one part cannot be the reflection of the other unless the bisector is the \bot bisector.
- **36.** D
- **37.** (-3,4)

38. (3, -4)

39. (-3, -4)

40. (4, 3)

41.

point symmetry about any pt. on the line; reflectional in any member of the family of lines y = -x + b

42.

reflectional in y-axis

43.

reflectional in *x*-axis

 rotational symmetry of any ∠ about the origin; reflectional in any line through the origin

45. 4/*y*

reflectional in x = -2

46.

point symmetry about origin

47.

reflectional in y-axis

48.

reflectional in *x*-axis

49-50. Answers may vary. Samples are given.

49.

Geometry

50

