Answers for Lesson 9-5, pp. 500-503 Exercises

1. enlargement; center A, scale factor $\frac{3}{2}$

2. enlargement; center C, scale factor 3

3. enlargement; center R, scale factor $\frac{3}{2}$

4. reduction; center K, scale factor $\frac{1}{3}$

5. reduction; center L, scale factor $\frac{1}{3}$

6. enlargement; center M, scale factor 2

7. reduction; center (0, 0), scale factor $\frac{1}{2}$

8. enlargement; center (0,0), scale factor 2

9. enlargement; center (0,0), scale factor $\frac{3}{2}$

10. 121.94 in.

11. 512 in.

12. 67.5 in.

13. 1.25 ft

14. about 0.35 in.

15. P'(6, -3), Q'(6, 12), R'(12, -3)

16. P'(-50, 10), Q'(-30, 30), R'(10, -30)

17. $P'\left(-\frac{9}{4},0\right), Q'\left(0,\frac{9}{4}\right), R'\left(\frac{3}{4},-\frac{9}{4}\right)$

- **18.** D'(2, -10)
- **20.** A'(-9,3)
- **22.** M'(0,0)
- **24.** $F'(-1, -\frac{2}{3})$

19. L'(-15,0)

21. T'(0, 18)

- **23.** N'(-0.4, -0.7)
- **25.** $B'(\frac{1}{8}, -\frac{1}{15})$

- **26.** $Q'(6\sqrt{6}, \frac{3\sqrt{2}}{2})$
- **27.** Q'(-9, 12), W'(9, 15), T'(9, 3), R'(-6, -3)
- **28.** Q'(-6,8), W'(6,10), T'(6,2), R'(-4,-2)
- **29.** $Q'(-\frac{3}{2},2), W'(\frac{3}{2},\frac{5}{2}), T'(\frac{3}{2},\frac{1}{2}), R'(-1,-\frac{1}{2})$
- **30.** $Q'\left(-\frac{3}{4},1\right), W'\left(\frac{3}{4},\frac{5}{4}\right), T'\left(\frac{3}{4},\frac{1}{4}\right), R'\left(-\frac{1}{2},-\frac{1}{4}\right)$
- **31.** Q'(-1.8, 2.4), W'(1.8, 3), T'(1.8, 0.6), R'(-1.2, -0.6)
- **32.** Q'(-2.7, 3.6), W'(2.7, 4.5), T'(2.7, 0.9), R'(-1.8, -0.9)
- **33.** Q'(-30, 40), W'(30, 50), T'(30, 10), R'(-20, -10)
- **34.** Q'(-300, 400), W'(300, 500), T'(300, 100), R'(-200, -100)
- The image has side lengths 10 in. and \angle measures 60.
- **36.** B

© Pearson Education, Inc., publishing as Pearson Prentice Hall. All rights reserved.

38.

39.

40.

- **41.** Check students' work.
- **42.** Use a scale factor of $\frac{2}{5}$.

43.
$$I'J' = 10; H'J' = 12$$

44.
$$HJ = 12$$
; $I'J' = 5.25$

45.
$$HI = 32$$
; $I'J' = 7.5$

46. The perimeter is doubled but the area is multiplied by 4.

47.
$$x = 3$$
; $y = 60$

48. 60, 60; the two triangles are similar, so corresponding angles are congruent.

50.

51.

52.

53.

- **54.** 12
- **55.** 60 cm
- **56.** $\frac{9}{256}$ ft²
- **57.** False; a dilation doesn't map a segment to $a \cong$ segment unless the scale factor is 1.
- **58.** False; a dilation does not change orientation.
- **59.** False; a dilation with a scale factor greater than 1 is an enlargement.
- **60.** True; the image and preimage are similar, so the corresponding \triangle are \cong .

© Pearson Education, Inc., publishing as Pearson Prentice Hall. All rights reserved

- **61.** False; if the center of dilation is on the preimage, it is also on the image.
- **62.** Each vertex is 1 ft from the light.
- **63.** Connect corresponding points A and A' and B and B'. Extend $\overline{AA'}$ and $\overline{BB'}$ until they intersect at the center of dilation. The scale factor is the length of $\overline{A'B'}$ divided by the length of \overline{AB} .
- 64. a., c.

b. P'(-3, -6), Q'(-9, -12),R'(-12, -3)

- **65.** a. P'(-1, -2), Q'(-3, -4), R'(-4, -1)
 - **b.** Each point of the \triangle is reflected in the origin, which is the point of reflection. Two figures are symmetrical with respect to a pt. P if P is the midpoint of each segment that connects two corr. points of the figures.
- **66.** Construct small square D'E'F'G' so that $\overline{D'G'}$ is on \overline{AC} (with D' between A and G'), E' is on \overline{AB} , and F' is inside $\triangle ABC$. Draw $\overline{AF'}$ to meet \overline{BC} at F. Through F construct the line \parallel to \overline{AC} . Label its point of intersection with \overline{AB} as E. Through E and F construct the lines \bot to \overline{AC} . Label their points of intersection with \overline{AC} as D and G respectively. DEFG is the desired square.