Answers for Lesson 9-6, pp. 509-511 Exercises

1. rotation

- **2.** translation
- **3.** Neither; the figures do not have the same orientation.

F is translated down twice the distance between ℓ and m.

5. M ** (**) *

M is translated across line m twice the distance between ℓ and m.

6. T

T is translated across line m twice the distance between ℓ and m.

L is rotated clockwise about 180° .

V is rotated clockwise about 145°.

8.

Answers for Lesson 9-6, pp. 509-511 Exercises (cont.)

9.

N is rotated clockwise about 160° .

10.

11.

12.

13.

14.

15.

- **16.** opp.; reflection
- **18.** same; translation
- 20. same; rotation
- 22. opp.; reflection

- 17. opp.; glide reflection
- 19. same; rotation
- **21.** same; translation
- 23. opp.; glide reflection

Answers for Lesson 9-6, pp. 509-511 Exercises (cont.)

24. glide reflection; $(x, y) \rightarrow (x - 2, y - 2)$ followed by refl. in y = x - 1

- **25.** rotation; 180° about the pt. $(\frac{1}{2}, 0)$
- **26.** C
- **27.** Odd isometries can be expressed as the composition of an odd number of reflections. Even isometries are the composition of an even number of reflections.
- 28. Check students' work.
- **29.** Yes; a rotation of x° followed by a rotation of y° is equivalent to a rotation of $(x + y)^{\circ}$.
- **30.** No; explanations may vary.
- **31.** 60°

Geometry

- **32.** 60°
- **33.** $51\frac{3}{7}^{\circ}$
- **34.** 30°
- **35.** rotation; center C, \angle of rotation 180°
- **36.** glide reflection; $(x, y) \rightarrow (x + 11, y), y = 0$
- **37.** translation; $(x, y) \rightarrow (x 9, y)$
- **38.** reflection; y = 0

- **39.** reflection; x = 4
- **40.** reflection; $x = -\frac{1}{2}$
- **41.** rotation; center (3,0), \angle of rotation 180°
- **42.** glide reflection; $(x, y) \rightarrow (x, y + 4), x = 4$
- **43.** translation; $(x, y) \rightarrow (x 11, y 4)$
- **44.** rotation; center (0, 2), \angle of rotation 180°
- **45.** Sample: Translate the red R so that one point moves to its corresponding point on the blue R. Then reflect across a line passing through that point.

Answers for Lesson 9-6, pp. 509-511 Exercises (cont.)

- 46-48. Answers may vary. Samples are given.
- **46.** If \overline{XY} is reflected in line ℓ , then ℓ is the \bot bis. of $\overline{XX'}$ and $\overline{YY'}$, so $\overline{XX'} \parallel \overline{YY'}$ and XX'YY' is an isosc. trap. Therefore $\overline{XY} \cong \overline{X'Y'}$.
- **47.** $\overline{XX'} \parallel \overline{YY'}$ and $\overline{XX'} \cong \overline{YY'}$, so XX'Y'Y is a \square . Therefore, $\overline{XY} \cong \overline{X'Y'}$.
- **48.** If \overline{XY} is rotated x° about pt. R, then $\overline{RX} \cong \overline{RX'}$ and $\overline{RY} \cong \overline{RY'}$. Also, $m \angle XRY + m \angle YRX' = m \angle YRX' + m \angle X'RY' = x$, so $\angle XRY \cong \angle X'RY'$. So $\triangle XRY \cong \triangle X'RY'$ by SAS and $\overline{XY} \cong \overline{X'Y'}$ by CPCTC.
- **49.** Answers may vary. Sample: Since a reflection moves a pt. in the direction \bot to the translation, the order does not matter.
- **50.** No; explanations may vary. Sample: If (1, 1) is reflected over the line y = x and then the x-axis, the image is (1, -1). If the reflections are reversed, the image is (-1, 1).
- **51.** (6, 5)
- **52.** (3, 8)
- **53.** (2, 6)
- **54.** (-3,1)