Name_ - Graph $$y = ax^2 + bx + c$$ How does the graph of $y = \frac{1}{2}x^2 - 2x + 5$ differ from the graph of $y = x^2$? | X | 0 | 1 | 2 | 3 | 4 | |---|---|---|---|---|---| | У | | | | | | The graph $y = ax^2 + bx + c$ is a parabola that: | opens up if | opens down if | |--|---| | is narrower than the graph of $y = x^2$ if | is wider than the graph of $y = x^2$ if | | has an axis of symmetry of $x = \frac{-b}{2a}$ | has a vertex with an x-coordinate of | | has a y-intercept of | | #### EXAMPLES 2. $$y = -2x^2 - 12x - 8$$ opens: ____ AOS____ wider narrower neither? vertex _____ y-int _____ 3. $$y = \frac{1}{4}x^2 - x + 2$$ opens _____ AOS _____ wider narrower neither? vertex _____ y-int ____ | X | | |---|--| | У | | | X | | | |---|--|--| | У | | | | A | lgebra | 1 | Notes | |---|---------|---|-------| | | - Table | | | Name____ Use Square Roots to Solve Quadratic Equations | 000 044010 | 110010 10 00000 | | | |------------|---|------------|----| | | Γ. | | 1/ | | √ # | · • • • • • • • • • • • • • • • • • • • | - V | ΣV | | | | | | | | | | | | | | | | ### A Radical Expression is in simplest form when: - 1. No radicand has a perfect square factor other than 1. - 2. The radicand contains no fractions. - 3. No radicals appear in the denominator of a fraction. (You will explore this more in Algebra 2) Examples of Rule #1: No radicand has a perfect square factor other than 1. | 1. | √9 | 2. –√49 | 3. | √100 | 4. | ±2√16 | |--|-----|---------|--|------|----|-------| | | | | And the second s | | | | | 5. | √12 | 6. –√8 | 7. | √192 | 8. | ±√27 | | - Committee of the Comm | | | | | | | Examples of Rule #2: The radicand contains no fractions. | 9. | $\sqrt{\frac{5}{4}}$ | 10. | ±√16/81 | | |----|----------------------|-----|---------|--| | | | | | | Examples of Rule #3: No radicals appear in the denominator of a fraction. | Cyambies of Maio 11 o 11 o 14 | 12 | | |-------------------------------|-------------|---| | $11. \frac{5}{7}$ | 12. ———— | | | √9 | -√36 | į | | | | | Special cases: Is $-\sqrt{25}$ the same as $\sqrt{-25}$? You can use square roots to solve quadratic equations in the form of $ax^2 + c = 0$. - A. Isolate the quadratic term x^2 to one side of the equation. - B. Take the square root of both sides to solve. REMEMBER to include both roots!!! - C. Exact solutions leave irrational #s in simplest radical form. - D. Use a calculator to find approximate solutions (round to the nearest hundredth). Solve the following equations. List answers as both exact and approximate. | 3. | $2x^2 = 40$ | 14. $n^2 - 18 = -18$ | 15. $b^2 + 12 = -7$ | |----|-------------|----------------------|------------------------------| 6. | $4x^2=9$ | 17. $4x^2 - 10 = 98$ | $18. 3x^2 - 35 = 45 - 2x^2$ | · | | | | | | | | | | | Name____ ### Solve Quadratic Equations by the Quadratic Formula The Quadratic Formula $$\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$ Used to solve ANY quadratic equation in the form of $ax^2 + bx + c = 0$. - 1. Make sure the equation is set = 0!! - 2. Identify the values for a, b, and c. - 3. Substitute these values into the formula. Be very careful of signs and order of operations!! Solve the following quadratic equations using the Quadratic Formula. 1. $3x^2 + 5x = 8$ 2. $2x^2 - 4 = 3x$ 3. $x^2 + 4x + 1 = 0$ 4. $3x^2 = 12$ | 1. | x² - | - 5 <i>x</i> | = 14 | |----|------|--------------|------| 2. $$2x^2 + 9x + 7 = 3$$ 3. $$x^2 + 10x + 1 = 0$$ 4. $$5x^2 - 3 = -2x$$ 5. $$-2x^2 + 32 = 0$$ 6. $$4x^2 - 12x + 9 = 0$$ | ZERO PRODUCT PROPERTY: | If a = 0 OR b=0 a and b are known as | then ab= | |------------------------|--|----------------| | • | sed to solve an equation when one or | | | 7. $(x+5)(x-3)=0$ | 8. $(x-4)(2x-6)=0$ | 9. $x(2x-7)=0$ | To factor and use the zero product property to solve polynomial equations, remember these steps: - 1. Set each equation = 0; - 2. Factor the polynomial (start by looking for a GCF); - 3. Set each factor = 0; - 4. Solve each equation; - 5. Check your roots in the original equation. | 10. | $a^2 + 5a = 0$ | 11. | $3x^2 = 81x$ | 12. | $12y^2 = 48y$ | |-----|----------------|-----|---------------|-----|---------------| | 10. | u + 5u = 0 | *** | | | 22/ | | | | | | | | | | | • | | | | | | | | | | , | | | • | ļ | | | | | 13. | (4x-2)(2x+3)=0 | 14. | $14x = 21x^2$ | 15. | (x+6)(x-6)=0 | | | | | | | | | | • | | • | . } | | ļ | | | | | | | | | | | | | , | | | | | ### Solving Quadratic Equations by Factoring Solve each equation by factoring. OddS only 1) $$(k+1)(k-5)=0$$ 2) $$(a+1)(a+2)=0$$ 3) $$(4k+5)(k+1)=0$$ 4) $$(2m+3)(4m+3)=0$$ 5) $$x^2 - 11x + 19 = -5$$ 6) $$n^2 + 7n + 15 = 5$$ 7) $$n^2 - 10n + 22 = -2$$ 8) $$n^2 + 3n - 12 = 6$$ 9) $$6n^2 - 18n - 18 = 6$$ 10) $$7r^2 - 14r = -7$$ 11) $$n^2 + 8n = -15$$ 12) $$5r^2 - 44r + 120 = -30 + 11r$$ 13) $$-4k^2 - 8k - 3 = -3 - 5k^2$$ $$14) \ b^2 + 5b - 35 = 3b$$ 15) $$3r^2 - 16r - 7 = 5$$ 16) $$6b^2 - 13b + 3 = -3$$ 17) $$7k^2 - 6k + 3 = 3$$ 18) $$35k^2 - 22k + 7 = 4$$ 19) $$7x^2 + 2x = 0$$ 20) $$10b^2 = 27b - 18$$ 21) $$8x^2 + 21 = -59x$$ 22) $$15a^2 - 3a = 3 - 7a$$ Name_____ Factoring Differences of Perfect Squares and Factoring Completely 1. Multiply: (2x-3)(2x+3) 2. Multiply: (4x+5)(4x-5) What type of polynomial are these? Which term is missing when written in descending order? What is special about each term? What operation is occurring? To factor the difference of perfect squares: $a^2 - b^2$ follow the pattern ()(Examples | 3, 25x² - | -16 4. | 81x ² – 4 | 5. $x^2 - 1$ | $6. x^2 - y^2$ | |------------------|------------------------|----------------------|---------------------------------|---------------------------| | 7. 49-a | 8. | $36x^2 - 121y^2$ | 9. 25 <i>x</i> ⁴ – 4 | 10. 196 – 9a ⁴ | | 11, 225 <i>p</i> | ² – 100 12. | 625 – 121w² | 13. 25x ⁶ – 81 | 14. 400y² – 900a² | To factor a polynomial <u>completely</u> means to apply EVERY factoring technique that applies in a problem. Please refer to the Factoring Flowchart given in class. #### Examples | 15, 3x – 12 | 16. x²-16 | 17. $5x^4 - 405$ | |-----------------------|---|-------------------------| | | | | | , | | | | | | · | | | | | | | | | | 18. $x^2 + 16$ | 19. $3x^2 - 12x + 3$ | 20. 12x²-x-6 | | | | | | | | | | | | | | , | | | | | | · | | 21, $4x^2 - 20x + 16$ | 22. $12ab^2 + 10cb^2 - 12ad^2 - 10cd^2$ | 23. $2x^2 + 13x - 7$ | | | | | | • | | | | | | | | | | | | | | | | 24. $5m^2 + 20m + 40$ | 25. $3x^5y - 243x^3y$ | $26. -10x^2 - 5x + 75$ | Algebra | 1 | Notes | |---------|---|-------| |---------|---|-------| # Simplify Radical Expressions A radical Expression is in simplest form when the following conditions are met: | Properties of Radical Expres | ssions: | Examples: | |--|---------|------------------------------| | $\sqrt{ab} = \sqrt{a} \cdot \sqrt{b}$ | 4. | $\sqrt{3}x \cdot \sqrt{20}x$ | | , | | | | $\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$ | 5. | $\sqrt{\frac{x^2}{100}}$ | | | l | | | implify each o | of the following. | | 9. $-3\sqrt{12x^2}$ | |--------------------------------|--|--------------------|---------------------------------------| | . √72 | 7. $\sqrt{3}x^2$ | $8. \sqrt{45}y^5$ | 9. –3√12 <i>x</i> ² | • | | | | | | | | | | | | | | | $0. \sqrt{5} \cdot \sqrt{10}$ | 11. $-2\sqrt{3}\times \cdot 4\sqrt{3}$ | 15xy | 13. $\sqrt{\frac{2x^4}{2x^2}}$ | | | | V 81 | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | | | | | : | | | | | | | | 1 | i
i | | | | | | | | | | | | ## Rationalizing the denominator: A process used to eliminate a radical from the denominator of a fraction. | A | process | usea to | eliminate | a radicai | Trom | rne gen | oming for | or a m | action. | |----|----------------------------|---------|-----------|-----------|------|-----------------------|-----------|--------|---------| | 14 | $\frac{5}{\sqrt{7}}$ | | | , | 15. | $\sqrt{\frac{5}{7}}$ | | | | | | | | | | | | ÷ | | b | | | | | | | | | | | | | 16 | $5. \sqrt{\frac{3x}{50}}$ | | · | | 17. | $\frac{9}{\sqrt{2x}}$ | | | | | | , | Sums and Differences of Radical Expressions: Combine Like Radicals!!! | <u>Jums</u> | and Differences of Radical Expre | | | |-------------|---------------------------------------|-----|--------------------------------------| | 18. | $4\sqrt{10} + \sqrt{10} - 9\sqrt{10}$ | 19. | $5\sqrt{3} + \sqrt{48}$ | | | • | | | | | | | | | | | | | | 00 | $\sqrt{12} + 6\sqrt{3} - \sqrt{20}$ | | $7\sqrt{28} + \sqrt{63} - 2\sqrt{7}$ | | 20. | V12 + 6V3 - V2U | 21. | /V28 + V63 - 2V/ | | | | | | | | | | | | | | , | | | | | | | # Multiplying Radical Expressions odds only Date_____Period__ Simplify. 1) $$3\sqrt{12}\cdot\sqrt{6}$$ 2) $$\sqrt{5} \cdot \sqrt{10}$$ 3) $$\sqrt{6}\cdot\sqrt{6}$$ 4) $$\sqrt{5} \cdot -4\sqrt{20}$$ 5) $$-4\sqrt{15} \cdot -\sqrt{3}$$ 6) $$\sqrt{20x^2} \cdot \sqrt{20x}$$ 7) $$\sqrt{15n^2} \cdot \sqrt{10n^3}$$ 8) $$\sqrt{18a^2} \cdot 4\sqrt{3a^2}$$ 9) $$-3\sqrt{7r^{\frac{3}{2}}}\cdot 6\sqrt{7r^{2}}$$ $$10) -4\sqrt{28x} \cdot \sqrt{7x^3}$$ 11) $$\sqrt{3}(5+\sqrt{3})$$ 12) $$2\sqrt{5}(\sqrt{6}+2)$$ 13) $$-3\sqrt{3}(2+\sqrt{6})$$ 14) $$\sqrt{3}(-5\sqrt{10}+\sqrt{6})$$ 15) $$-2\sqrt{15}(-3\sqrt{3}+3\sqrt{5})$$ 16) $5\sqrt{42x}(4+4\sqrt{7x})$ 17) $$\sqrt{14x}(3-\sqrt{2x})$$ 18) $\sqrt{6n}(7n^3 + \sqrt{12})$ 19) $$\sqrt{3v}(\sqrt{6} + \sqrt{10})$$ 20) $\sqrt{21r}(5+\sqrt{7})$ 21) $$(-2\sqrt{3}+2)(\sqrt{3}-5)$$ 22) $(5-4\sqrt{5})(-2+\sqrt{5})$ 23) $$(-2-3\sqrt{5})(5-\sqrt{5})$$ 24) $(\sqrt{5} - \sqrt{3})(\sqrt{5} + \sqrt{3})$ 25) $$(5\sqrt{2x} + \sqrt{5})(-4\sqrt{2x} + \sqrt{5x})$$ 26) $(-3\sqrt{3k}+4)(\sqrt{3k}-5)$ 27) $$(5+4\sqrt{3})(3+\sqrt{3})$$ 28) $(3\sqrt{2} + \sqrt{5})(\sqrt{2} - 3\sqrt{5r})$ ## Solving Radical Equations A radical Equation contains a radical expression with the variable in the radicand. To Solve: | Examples of squaring both sides of an equation: | | | | | | | | |---|-----------------------------------|---|--|--|--|--|--| | $1. \sqrt{x} = 4$ | $2. \qquad \sqrt{2x} = \sqrt{10}$ | , | | | | | | | | | | | | | | | | | | • | | | | | | | | | | | | | | | Squaring both sides of an equation sometimes results in EXTRANEOUS VALUES. Check your final answers to be sure they both work!! Only list the solutions true solutions. Examples: 3. $$3\sqrt{x} - 6 = 0$$ 4. $3\sqrt{4x - 19} - 11 = 10$ 5. $$\sqrt{3x-3} = \sqrt{2x+8}$$ 6. $\sqrt{6-x} = x$ 5. $$\sqrt{3x-3} = \sqrt{2x+8}$$ 6. $\sqrt{6-x} = x$ More examples: | | • | 1 | ł | |----|---|-------|----------------| | 7. | √ | x+6-1 | $\sqrt{x-6}=0$ | $$8. \qquad \sqrt{4x - 19} - \sqrt{2x + 12} = 0$$ $$9. \qquad \sqrt{20-x}-x=0$$ 10. $$4\sqrt{x-7} + 12 = 28$$ | | | | · · · · · · | |---|---|--|-------------| · | | | | | | | | | | | | · | | | | | | | | | | | • | | | | | | | | | | | | | | | | | |