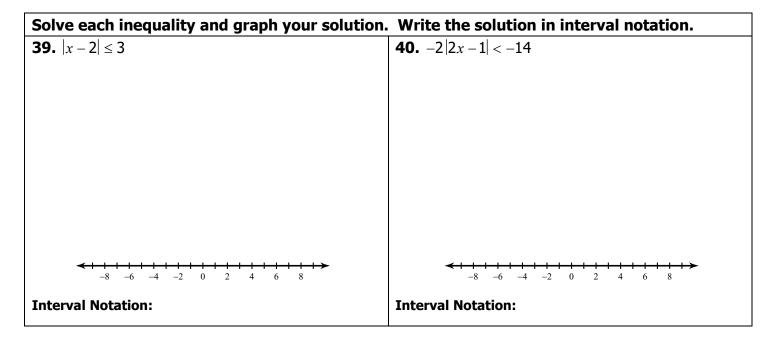
Algebra 2 Mid-Year Test Study Guide - Dec.2019

Name:

Date: _____ Block: _____

	Topic 1	Radicals	
Simplify each expression			
1. $\sqrt{243a^{25}}$			
2. 3√72 – 2√8 + 2√20	3. √2(√2 − 6√10	Ū)	4. $\frac{6}{\sqrt{12}}$
5. $\frac{\sqrt{2}-2\sqrt{3}}{\sqrt{8}}$		6. $\frac{2+\sqrt{3}}{5-\sqrt{3}}$	
	Topic 2: Cor	nplex Numbers	
*Recall: <i>i</i> =	$i^2 =$	$i^3 =$	$i^4 =$
Simplify each expression	on.		
7. √-81	8. 2√−14 · √8	9. 18 <i>i</i> ⁴⁹	10. $(i^3\sqrt{5})^2 \cdot 2i$
11. (4 – 7 <i>i</i>) – (5 + 2 <i>i</i>)	12. (9 + 2 <i>i</i>)(4 -	i)	13. (6 – 2 <i>i</i>) ²

14. $\frac{15}{6i}$	15. $\frac{1-5i}{2i}$	16. $\frac{3-3i}{7-i}$


Topic 3: Classifying Numbers & Identifying Properties				
Simplify (if possible), t	Simplify (if possible), then name all sets to which each value belongs.			
17. $\frac{\sqrt{64}}{5}$	18. √–36	19. $\sqrt{3} - \sqrt{3}$	20. $ 1-4^2 $	
21. 2 + 5 <i>i</i>	22. √15	23. $-\sqrt{\frac{45}{5}}$	24. -8 <i>i</i> · 5 <i>i</i>	

Name the property that justifies each statement.			
25. $\sqrt{5}(8-\sqrt{3}) = 8\sqrt{5} - \sqrt{3} \cdot \sqrt{5}$	26. $2m^3 + (-2m^3) = 0$		
27. $-9 \cdot (2+3i) = (2+3i) \cdot -9$	$28. \left(\frac{x}{5}\right) \cdot \left(\frac{5}{x}\right) = 1$		

Topic 4: Factoring						
Identify the special factoring pat	Identify the special factoring patterns.					
DIFFERENCE OF SQUARES	DIFFERENCE OF SQUARES SUM OF CUBES DIFFERENCE OF CUBES					
$a^2 - b^2 =$	$a^{3} + b^{3} =$	$a^{3}-b^{3}=$				
Factor the expressions below co	npletely.					
29. $36x^2 - 64y^2$	30. <i>m</i> ³ + 64					
23. 30 <i>x</i> – 04 <i>y</i>	30. <i>m</i> + 04					

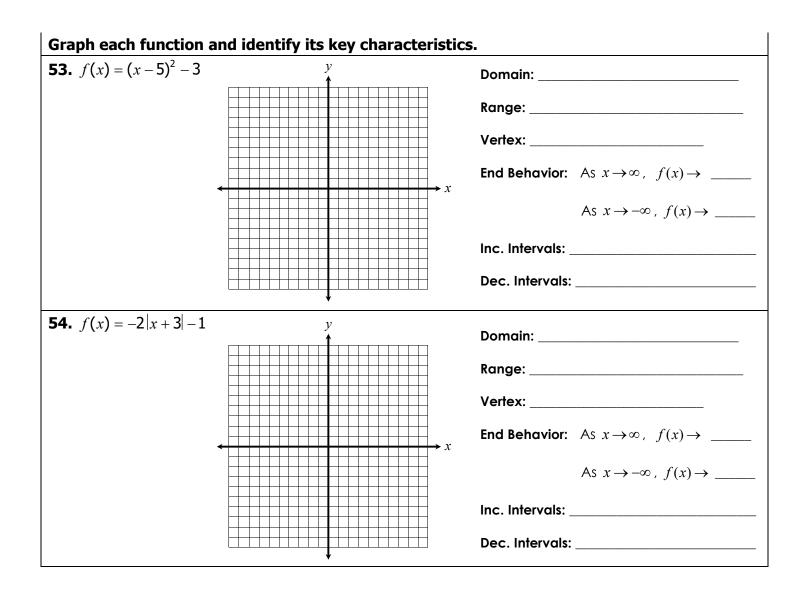
31. $81k^4 - 3k$	32. $2xy^5 + 250xy^2$
33. $p^3 - 10p^2 + 25p$	34. $x^4 - 11x^2 + 28$
35. $4x^3 + 18x^2 - 10x$	36. $9x^3 - 63x^2 - x + 7$

Topic 5: Absolute Value	e Equations & Inequalities
Solve each equation. Check all solutions.	
37. $ 4m+5 = 9$	38. $-5 7 - x + 6 = -14$

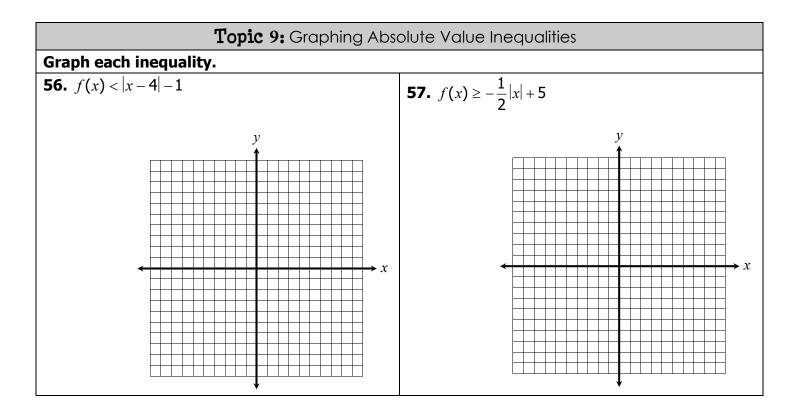
Topic 6: Quadratic Equations					
Discriminant Formula:	 If d < 0, there are 2 imaginary roots. If d = 0, there is 1 rational root If d > 0 and a perfect square, there are 2 rational roots If d > 0 and not a perfect square, there are 2 irrational roots. 				
Find the discriminant of eac	h equation. Then, d	determine the n	number and type of roots.		
41. $x^2 - 7x + 15 = 0$ 42. $2x^2 - 72 = 0$ 43. $-x^2 + 9x + 23 = 0$					
Solve using the most approp	priate method. Sim	plify all irration	al and complex solutions.		
44. $2x^2 - 18 = 78$		45. $x^2 - 16x + 73$	3 = 0		

46. $9x^2 - 18x = 11$	47. $2x^2 - 10x - 26 = x - 5$
48. The roots of a quadratic equation are -7 and 1.	
function. Give your answer in standard form ar	nd factored form.

Topic 7: Polynomial Equations				
Solve each equation. Simplify all irrational and complex solutions.				
49. $x^3 - 27 = 0$	50. $2x^3 - 5x^2 + 18x - 45 = 0$			


51. A polynomial function is defined by the equation below. Identify the zeros, their multiplicity, and the effect on the graph

$$f(x) = -2x(3x+2)^{7}(x-1)^{2}$$


Zero	Multiplicity	Effect

52. The zeros of a polynomial equation are -4 (multiplicity 2) and 3 (multiplicity 1). Write an equation in standard form that could represent the function.

	Topic 8: Pare	ent Functions, Trans	sformations, c	ind Graphing	
Identify e	ach parent function,	then sketch the gr	aph.		
Linear		Absolute Value	$\xrightarrow{\uparrow}$	Quadratic	
Cubic	\longleftrightarrow	Square Root ←	$\xrightarrow{\uparrow}$	Cube Root	

<i>y</i>	Domain:
	Panao
	Range:
	Rel. Maximum(s):
	Rel. Minimum(s):
$\rightarrow x$	End Behavior: As $x \to \infty$, $f(x) \to$
	As $x \to -\infty$, $f(x) \to $
	Inc. Intervals:
	De a la la martin
ł	Dec. Intervals:

Topic 10: Applications & Regression	
-------------------------------------	--

58. This past Saturday, Jack worked for 3 hours mowing the lawn and doing chores in the house. Mowing the lawn burns 352 calories per hour and doing chores burns 136 calories per hour. If he burned a total of 570 calories, how long did it take him to mow the lawn?

59. The pilot in a helicopter tossed a life float down to a swimmer in the water. The height, h, of the float after time t seconds is represented by the equation $h(t) = -16t^2 - 3t + 55$. Find the time it takes the float to reach the swimmer.

60. The table below shows the number of teachers, *t*, and the number of students, *s*, at 6 high schools in the city. Write a **linear** equation to model the data, then predict the number of teachers for a school with 1,500 students.

t	115	140	76	168	110	92
S	1,122	1,390	788	1,564	1,081	924

61. The table below shows the population, *p*, of a city during certain years, *t*. Write a **cubic** equation to model the data, then predict the population of the city in 2020.

t	1993	1996	2000	2005	2009	2014
S	2,850	3,257	4,234	6,475	10,158	27,385

Topic 11: Functions		
Use $f(x) = x^2 + 5x - 14$, $g(x) = x + 1$, and $h(x) = 15 - 2x^2$ to answer questions 62 - 63.		
62. Find [<i>f</i> (7)] – 2	63. If $g(x) = -23$, find x.	
For each equation: (1) identify the function family, and (2) describe the transformations.		
	71. $f(x) = \frac{1}{3}(x+7)^2 - 2$	