\qquad
Study Guide - Dec. 2019 \qquad Block: \qquad

Topic 1: Radicals		
Simplify each expression.		
1. $\sqrt{243 a^{25}}$		
2. $3 \sqrt{72}-2 \sqrt{8}+2 \sqrt{20}$	3. $\sqrt{2}(\sqrt{2}-6 \sqrt{10})$	4. $\frac{6}{\sqrt{12}}$
5. $\frac{\sqrt{2}-2 \sqrt{3}}{\sqrt{8}}$		6. $\frac{2+\sqrt{3}}{5-\sqrt{3}}$

Topic 2: Complex Numbers
*Recall: $\quad i=\quad i^{2}=\quad i^{3}=\quad i^{4}=$
Simplify each expression.

| 7. $\sqrt{-81}$ | 8. $2 \sqrt{-14} \cdot \sqrt{8}$ | 9. $18 i^{49}$ | | 10. $\left(i^{3} \sqrt{5}\right)^{2} \cdot 2 i$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 11. $(4-7 i)-(5+2 i)$ | | 12. $(9+2 i)(4-i)$ | 13. $(6-2 i)^{2}$ | |

14. $\frac{15}{6 i}$	15. $\frac{1-5 i}{2 i}$	16. $\frac{3-3 i}{7-i}$

Topic 3: Classifying Numbers \& Identifying Properties			
Simplify (if possible), then name all sets to which each value belongs.			
17. $\frac{\sqrt{64}}{5}$	18. $\sqrt{-36}$	19. $\sqrt{3}-\sqrt{3}$	20. $\left\|1-4^{2}\right\|$
21. $2+5 i$	22. $\sqrt{15}$	23. $-\sqrt{\frac{45}{5}}$	24. $-8 i \cdot 5 i$

Name the property that justifies each statement.
25. $\sqrt{5}(8-\sqrt{3})=8 \sqrt{5}-\sqrt{3} \cdot \sqrt{5}$
26. $2 m^{3}+\left(-2 m^{3}\right)=0$
27. $-9 \cdot(2+3 i)=(2+3 i) \cdot-9$
28. $\left(\frac{x}{5}\right) \cdot\left(\frac{5}{x}\right)=1$

Topic 4: Factoring
Identify the special factoring patterns.

DIFFERENCE OF SQUARES
$a^{2}-b^{2}=$

SUM OF CUBES
$a^{3}+b^{3}=$

DIFFERENCE OF CUBES

$a^{3}-b^{3}=$

Factor the expressions below completely.
29. $36 x^{2}-64 y^{2}$
30. $m^{3}+64$

31. $81 k^{4}-3 k$	32. $2 x y^{5}+250 x y^{2}$
33. $p^{3}-10 p^{2}+25 p$	34. $x^{4}-11 x^{2}+28$
35. $4 x^{3}+18 x^{2}-10 x$	36. $9 x^{3}-63 x^{2}-x+7$

Topic 5: Absolute Value Equations \& Inequalities
Solve each equation. Check all solutions.
37. $|4 m+5|=9$
38. $-5|7-x|+6=-14$

Solve each inequality and graph your solution. Write the solution in interval notation.
39. $|x-2| \leq 3$

Interval Notation:
40. $-2|2 x-1|<-14$

Interval Notation:

Topic 6: Quadratic Equations

Discriminant Formula:

- If $\boldsymbol{d}<\mathbf{0}$, there are $\mathbf{2}$ imaginary roots.
- If $\boldsymbol{d}=\mathbf{0}$, there is $\mathbf{1}$ rational root
- If $\boldsymbol{d}>\mathbf{0}$ and a perfect square, there are $\mathbf{2}$ rational roots
- If $\boldsymbol{d}>\mathbf{0}$ and not a perfect square, there are $\mathbf{2}$ irrational roots.

Find the discriminant of each equation. Then, determine the number and type of roots.

41. $x^{2}-7 x+15=0$	42. $2 x^{2}-72=0$	43. $-x^{2}+9 x+23=0$

Solve using the most appropriate method. Simplify all irrational and complex solutions.
44. $2 x^{2}-18=78$
45. $x^{2}-16 x+73=0$
46. $9 x^{2}-18 x=11$
47. $2 x^{2}-10 x-26=x-5$
48. The roots of a quadratic equation are -7 and 1 . Write an equation that could represent this function. Give your answer in standard form and factored form.

Topic 7: Polynomial Equations

Solve each equation. Simplify all irrational and complex solutions.
49. $x^{3}-27=0$
50. $2 x^{3}-5 x^{2}+18 x-45=0$
51. A polynomial function is defined by the equation below. Identify the zeros, their multiplicity, and the effect on the graph

$$
f(x)=-2 x(3 x+2)^{7}(x-1)^{2}
$$

Zero	Multiplicity	Effect

52. The zeros of a polynomial equation are -4 (multiplicity 2) and 3 (multiplicity 1). Write an equation in standard form that could represent the function.

Topic 8: Parent Functions, Transformations, and Graphing

Identify each parent function, then sketch the graph.

Graph each function and identify its key characteristics.
53. $f(x)=(x-5)^{2}-3$

Domain: \qquad
Range: \qquad
Vertex: \qquad
End Behavior: As $x \rightarrow \infty, f(x) \rightarrow$ \qquad

As $x \rightarrow-\infty, f(x) \rightarrow$ \qquad
Inc. Intervals: \qquad
Dec. Intervals: \qquad
54. $f(x)=-2|x+3|-1$

Domain: \qquad
Range: \qquad
Vertex: \qquad
End Behavior: As $x \rightarrow \infty, f(x) \rightarrow$ \qquad
As $x \rightarrow-\infty, f(x) \rightarrow$ \qquad
Inc. Intervals: \qquad
Dec. Intervals: \qquad
55. $f(x)=x^{3}-9 x^{2}+24 x-16$

Domain: \qquad
Range: \qquad
Rel. Maximum(s): \qquad
Rel. Minimum(s): \qquad
End Behavior: As $x \rightarrow \infty, f(x) \rightarrow$ \qquad

As $x \rightarrow-\infty, f(x) \rightarrow$ \qquad

Inc. Intervals: \qquad

Dec. Intervals: \qquad

Topic 9: Graphing Absolute Value Inequalities

Graph each inequality.
56. $f(x)<|x-4|-1$

57. $f(x) \geq-\frac{1}{2}|x|+5$

Topic 10: Applications \& Regression

58. This past Saturday, Jack worked for 3 hours mowing the lawn and doing chores in the house. Mowing the lawn burns 352 calories per hour and doing chores burns 136 calories per hour. If he burned a total of 570 calories, how long did it take him to mow the lawn?
59. The pilot in a helicopter tossed a life float down to a swimmer in the water. The height, h, of the float after time t seconds is represented by the equation $h(t)=-16 t^{2}-3 t+55$. Find the time it takes the float to reach the swimmer.
60. The table below shows the number of teachers, t, and the number of students, s, at 6 high schools in the city. Write a linear equation to model the data, then predict the number of teachers for a school with 1,500 students.

\boldsymbol{t}	115	140	76	168	110	92
\boldsymbol{s}	1,122	1,390	788	1,564	1,081	924

61. The table below shows the population, p, of a city during certain years, t. Write a cubic equation to model the data, then predict the population of the city in 2020.

\boldsymbol{t}	1993	1996	2000	2005	2009	2014
\boldsymbol{s}	2,850	3,257	4,234	6,475	10,158	27,385

Topic 11: Functions

Use $f(x)=x^{2}+5 x-14, g(x)=x+1$, and $h(x)=15-2 x^{2}$ to answer questions 62-63.
62. Find $[f(7)]-2$
63. If $g(x)=-23$, find x.

For each equation: (1) identify the function family, and (2) describe the transformations.
71. $f(x)=\frac{1}{3}(x+7)^{2}-2$

