

Name all segments parallel to \overline{EF} . \overline{HG} , \overline{JK} Name all segments parallel to \overline{FG} . EH

Name three pairs of skew lines. ANSWURS WIII

Sample answer: EFTKG,

Name \overrightarrow{EF} in another way. \overrightarrow{EG}

How many different segments can be named? 7

Name a pair of opposite rays with E as an endpoint,

Name in two different ways the ray opposite \overrightarrow{FG} . Name \overrightarrow{GE} in two other ways. \overrightarrow{GF} \overrightarrow{FE} \overrightarrow{FE} \overrightarrow{FD}

Are \overline{EG} and \overline{GE} the same segment? $\sqrt{\ell}$

If GJ = 32, find the value of each of the following.

$$x = 4$$
 $GH = 12$

If AX = 45, find the value of each of the following.

UFINGX $\angle AOB = x + 3, \angle AOC = 2x + 11, \angle BOC = 4x - 7$

 $\angle COD = 9x + 4, \angle BOC = 4x - 1, \angle BOD = 14x - 6$ 0.2x + 11 = x + 3 + 4x - 7(2) 14x - 6 = 9x + 4 + 4x - 1 2x + 11 = 5x - 4 11 = 3x - 4 x - 6 = 3 14x - 6 = 13x + 3 x - 6 = 3

Construct the perpendicular bisector of \overline{XY} .

Construct the angle bisector of $\angle Z$.

$$LM = \sqrt{(-3 - 4)^2 + (4 - 1)^2}$$

$$= \sqrt{1^2 + (-7)^2}$$

$$= \sqrt{1 + 49} = \sqrt{60}$$

$$NP = \sqrt{(3-1)^2 + (8-0)^2}$$

$$= \sqrt{2^2 + 8^2}$$

$$= \sqrt{4 + 104} = \sqrt{108}$$

Finding Angle Measures \overrightarrow{WR} bisects $\angle AWB$ so that $m\angle AWR = x$ and $m \angle BWR = 4x - 48$. Find $m \angle AWB$.

Find the distance between the points to the nearest tenth.

$$L(-4,11), M(-3,4)$$

Show that each conditional is false by finding a counterexample:

If it is 12:00 noon, then the sun is shining. on Jan 3, 2017, at noon, the sun Was not Shining If a number is divisible by 3, then it is odd 4 is divisible by 3 but it is even.

Write the converse of each statement. If the converse is true, write true; if it is not true, provide a counterexample.

If
$$x - 4 = 22$$
, then $x = 26$
CMY: If $x = 21e$, then $x - 4 = 22$

If m^2 is positive, then m is positive. (IMY: If M is positive, then m^2 is pos. True

If point A is in the first quadrant of a coordinate plane, then X>0 CONV: If x>0, then point A is in the

False: (1,-2)

Each condition statement is true. Consider each converse. If the converse is true, write a biconditional.

If two angles have the same measure, then they are congruent.

Two angles have the same measure if tonly if they are Congruent

If n = 17, then |n| = 17. Converse is false; n=-17 Write the two conditional statements that make up each biconditional.

A whole number is a multiple of 5 if and only if its last digit is either a 0 or a 5.

eIf a whole # is a multiple of 5, then its last Digit is either a 0 or a 5 or 5, then eIf the last digit of a whole # 150 or 5, then

Two lines are perpendicular if and only if they intersect to form four right angles.

, If 2 lines are perp, then they intersect to form 4 right 2's

. If 2 lines intersect to form 4 right 2's, then may are perpendicular

Use the Law of Detachment to draw a conclusion.

If the measures of two angles have a sum of 90 degrees, then the angles are complementary. m < A + m < B = 90

LA & LB are amplementary

If the football team wins on Friday night, then practice is cancelled for Monday.

The football team won by 7 points on Friday night.

practice is concelled for monday

If the football team wins on Friday night, then

to draw a conclusion from the following statement.

Use the Law of Detachment and the Law of Syllogism

- 1) If it is raining, the temperature is greater than 32 degrees
- 2) If the temperature is greater than 32 degrees, then it is not freezing outside.
- 3) It is raining

it is not freezing outside

- 1) If you live in Providence, then you live in Rhode Island
 2) If you live in Rhode Island, then you live in the smallest
- 2) If you live in Rhode Island, then you live in the smallest state in the United States.
- 3) Shannon lives in Providence Shannon lives in the Smallest State in the U.S.

Give a reason for each step

$$0.25x + 2x + 12 = 39$$
 GiVen
 $2.25x + 12 = 39$ Simplify
 $2.25x = 27$ Subtract on
 $225x = 2700$ multiplication
 $x = 12$ DINSUM

Name the property that justifies each statement

If
$$10x + 6y = 14$$
 and $x = 2y$, then $10(2y) + 6y = 14$. Swosh two on

If
$$TR = MN$$
 and $MN = VW$, then $TR = VW$.

TYMSITYL

If
$$\overline{JK} \cong \overline{LM}$$
, then $\overline{LM} \cong \overline{JK}$. Symmetric

Find the values of the variables

$$(4x+1)^{\circ} = 65^{\circ}$$

$$4x+1=65$$

$$4x=64$$

$$x=16$$

Which lines or segments are parallel?

Justify your answer with a theorem or postulate.

Find the measure of each numbered angle

10°

Tell whether the ASA, AAS, SSS, SAS postulate can be applied to determine if the triangles are congruent.

Write a two-column proof	Statements	1 0 40 000
Given: $\angle K \cong \angle M$, $\overline{KL} \cong \overline{ML}$	<u>Statements</u> ①ZK=Zm, KI=mL	
Prove: $\triangle JKL \cong \triangle PML$		
	2 LMLP = LKLJ	(2) Vertical L'S
	(3) AJKL=APML	(3) ASA
M P		
Write a two-column proof	Statements	1 Reasons
Given: $\overline{BD} \perp \overline{AB}$, $\overline{BD} \perp \overline{DE}$, $\overline{BC} \cong \overline{C}$	TO () BD LAB, BD LDE,	Obiven
Prove: $\angle A \cong \angle E$	BC ECD	
AB	(DLACB Y LECD	Dvertical L'S
\ \ \ \ \	3 LB + LD are right	
\c	L\S	
+	(4) LB=LD	DAU right 2's are?
$D \longrightarrow E$	(5) DABL PAEDC	(3) ASA
	@ LA = LE	(DCPCTC
Write a two-column proof	Statements 1	REUDONS
Given: $\overline{FJ} \cong \overline{GH}$, $\angle JFH \cong \angle GHF$	OFF SOH, WIFH SCOUNT	Daiven
	DFT =HF	DReflexive
		3) SAS
	3/17/10 - 711/01	
	9FB STH	PCPCTC
J H		

Find the values of the variables:

Use the figure to answer the following questions:

How is WY related to XZ? Perp. bisector

Find XV. 4

Find WZ. 7,5

Find XY. Q

What kind of triangle is $\triangle WXV$? Might

Use the figure to answer the following questions:

Find the value of x. $\lambda = 5$

Find HI.

Find JI.

If L lies on \overline{KI} , then L is ? from H and J. eqwdistant

What kind of triangle is $\triangle HII$? ISOSCELES

Identify the two statements that contradict each other:

$$\overrightarrow{AB} \cong \overline{BC}$$
II) $m \angle A + m \angle B = 80$
III. $\triangle ABC$ is isosceles.

Write the negation of each statement:

- The angle measure is 65 The L Meuswe is not 65
- The restaurant is not open on Sunday
 The restaurant is open
 on Sunday

Write the Inverse and Contrapositive of each statement. Give the truth value of each:

• If two triangles are congruent, then their corresponding angles are congruent.

In: If 2 A'S are not =, then their war. L'S are not congruent.

False

Contra: If 2 ∆'5 Curr. L'5 are not congruent, then they are not ~ True

• If you live in Toronto, then you live in Canada
In: If you do not live in Toronto, then
you do not live in Canada False
Omtra: If you do not live in Canada,
then you do not live in Toronto
False

List the angles of each triangle in order from largest to smallest:

LD, LS, LA

LN, LS, LJ

List the sides of each triangle in order from largest to smallest:

Find the value of each variable. Leave your answer in simple radical form

$$y^{2}+12^{2}=16^{2}$$
 $y^{2}=112$
 $y=112$
 $y=112$
 $y=417$

Find the value of each variable. Leave your answers in simple radical form

$$28 = \sqrt{2}$$

 $1 = \frac{28}{12} = \frac{28}{2} = 14\sqrt{2}$

Find the value of x. Round your answer to the nearest degree

Write the ratios for sin P and cos P

Find the value of x. Round the lengths to the nearest tenth.

A person is standing 30 ft from a flagpole can see the top of the pole at a 35 degree angle of elevation. The person's eye level is 5 ft from the ground. Find the height of the flagpole to the nearest foot.

Find the indicated side/angle:

Find angle A

