Practice 6-7

Proofs Using Coordinate Geometry

1. Given $\triangle HAL$ with perpendicular bisectors *i*, *b*, and *m*, complete the following to show that *i*, *b*, and *m* intersect in a point.

- **a.** The slope of \overline{HA} is $\frac{-q}{p}$. What is the slope of line *i*?
- **b.** The midpoint of \overline{HA} is (p, q). Show that the equation of line *i* is $y = \frac{p}{q}x + q \frac{p^2}{q}$.
- **c.** The midpoint of \overline{HL} is (r + p, 0). What is the equation of line m?
- **d.** Show that lines *i* and *m* intersect at $(r + p, \frac{rp}{q} + q)$.
- **e.** The slope of \overline{AL} is $\frac{-q}{r}$. What is the slope of line *b*?
- **f.** What is the midpoint of \overline{AL} ?
- **g.** Show that the equation of line b is $y = \frac{r}{q}x + q \frac{r^2}{q}$.
- **h.** Show that lines b and m intersect at $(r + p, \frac{rp}{q} + q)$.
- i. Give the coordinates for the point of intersection of *i*, *b*, and *m*.

Complete Exercise 2 without using any new variables.

- **2.** *RHCP* is a rhombus.
 - **a.** Determine the coordinates of *R*.
 - **b.** Determine the coordinates of *H*.
 - **c.** Find the midpoint of \overline{RH} .
 - **d.** Find the slope of \overline{RH} .

••••

Practice

R

P (-a, -b)

C (0, 0)