* = complete

Simplifying Radicals

Fill in the table to get a list of Perfect Squares:

$$1^2 =$$

$$6^2 =$$

$$2^2 =$$

$$7^2 =$$

$$3^2 =$$

$$8^2 =$$

$$4^2 =$$

$$9^2 =$$

$$5^2 =$$

$$10^2 =$$

Property

Multiplication Property of Square Roots

For every number $a \ge 0$ and $b \ge 0$, $\sqrt{ab} = \sqrt{a} \cdot \sqrt{b}$.

Example
$$\sqrt{54} = \sqrt{9} \cdot \sqrt{6} = 3 \cdot \sqrt{6} = 3\sqrt{6}$$

To Simplify a Radical:

- 1. Find 2 numbers that multiply to get the number under the square root. One of the numbers MUST be a perfect square
- 2. Use the multiplication property to break apart the square root into 2 square roots
- 3. Take the square root of the perfect square
- 4. Double check to make sure the number under the square root does not have any perfect square factors

Examples:

 $*\sqrt{180}$

★ √98

¥√675

3

65

7/2

15/3

$$\sqrt{12} * \sqrt{32}$$

$$\frac{4}{\sqrt{22}} * \sqrt{8}$$

$$\sqrt{147}$$

 $\sqrt{80}$

4/11

45

$$\frac{1}{4} \sqrt{18} * \sqrt{8}$$

$$\sqrt{200}$$

$$*\sqrt{15}*\sqrt{6}$$

 $\sqrt{120}$

12

Day 2:

Square Roots With Variables:

$$\sqrt{x^2} = \sqrt{x^4} = \sqrt{x^4}$$

If a radical has a variable with an odd exponent, break apart the variable so that you have a variable to an even # power times the variable to the first power.

Examples:
$$b^{5} = b^{4} * b$$

 $m^{9} = m^{8} * m$

The square root of the variable to the even exponent is the variable raised to half of the exponent.

Examples:
$$\sqrt{b^5} = \sqrt{b^4 * b} = b^2 \sqrt{b}$$

 $\sqrt{m^9} = \sqrt{m^8 * m} = m^4 \sqrt{m}$

Example: Simplify

 $\sqrt{54t^2}$

孔后

 $\sqrt[4]{176a^3}$

49 1119

 $\star \sqrt{75x^2y}$

5X \(\sqrt{3} \)

 $\frac{1}{\sqrt{7200m^5n^6}}$

60m2n3 \2m

 $\star 5\sqrt{3c} * \sqrt{6c}$

15cV2

6092 JZ9

You Try...Simplify

 $\sqrt{a^2b^5}$

 $\sqrt{12x^4}$

 $\sqrt{48x^3}$

 $\sqrt{45x^2y^3}$

 $12\sqrt{60x^2}$

 $\sqrt{8x^6y^7}$

 $\sqrt{16a^3} * \sqrt{5a^2}$

 $\sqrt{3x} * \sqrt{5x^2}$

Dividing Radicals

Division Property of Square Roots

For every number $a \ge 0$ and b > 0, $\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$. **Example** $\sqrt{\frac{16}{25}} = \frac{\sqrt{16}}{\sqrt{25}} = \frac{4}{5}$

To Simplify Radicals with fractions:

- If possible, simplify the fraction
- Break up the square root to have a square root of the top and square root of the bottom
- Simplify both square roots

Simplifying using the Division Property

$$\sqrt{\frac{13}{64}}$$

$$\sqrt{\frac{15}{16}}$$

$$\sqrt{\frac{35}{144}}$$

$$\sqrt{\frac{49}{x^4}}$$

$$\sqrt{\frac{120}{10}}$$

$$\sqrt[4]{\frac{90}{5}}$$

$$*\sqrt{\frac{48}{75}}$$

$$4\sqrt{\frac{75x^5}{48x}}$$

$$\frac{5x^2}{4}$$

$$\frac{15}{49}$$

$$\star \frac{\sqrt{48n^6}}{\sqrt{6n^3}}$$

$$\frac{44x^3}{9x}$$

$$\frac{2x\sqrt{11}}{3}$$