Quadratic

Roots

Date:

- **1.** What are quadratic roots?
- 2. What else are quadratic roots referred to as?
- **3.** Find the roots by graphing: $f(x) = -x^2 + 2x + 8$

Date:

Factoring Review

Factor each polynomial completely:

1.
$$x^2 - 14x - 95$$

2.
$$5x^2 - 40x + 80$$

3.
$$4x^2 - x - 14$$

4.
$$16x^2 - 49$$

5.
$$5-20x^2$$

6.
$$24x^2 - 10x$$

Converting Standard Form to Vertex Form

Date:

Write each function in vertex form. Identify the vertex.

1.
$$f(x) = x^2 - 8x + 19$$

2.
$$f(x) = -2x^2 - 4x + 14$$

Function Families Review

Date:

Graph each function and give its characteristics.

1. f(x) = -|x+2|+5

- Parent Function: _____
- D: _____; R: ____
- Number of roots: _____
- End Behavior: As $x \to \infty$, $f(x) \to$
 - As $x \to -\infty$, $f(x) \to$
- Increasing Interval:
- Decreasing Interval: _____

2. $f(x) = \frac{6}{5}x - 1$

- Parent Function:
- D: _____; R: _____
- Number of roots:
- End Behavior: As $x \to \infty$, $f(x) \to$
 - As $x \to -\infty$, $f(x) \to$
- Increasing Interval: _____
- Decreasing Interval:

Solve each quadratic equation by factoring:

1.
$$x^2 + 11x + 30 = 0$$

2.
$$2x^2 + x = 2x + 6$$

3.
$$4x^2 - 74 = x^2 + 1$$

4.
$$8x^2 + 43x = 7x$$

Factored Form vs. Vertex Form

Date:

1. What are the roots of the quadratic equation below?

$$f(x) = (3x+2)(x-4)$$

2. Write the equation below in factored form and vertex form. Give the axis of symmetry, vertex, and roots.

$$f(x) = -x^2 - 12x - 27$$

Solving						
Quadra	tics	by				
Square	Roc	ots				

Date:

Solve each quadratic equation by square roots:

1.
$$x^2 - 10 = 159$$

2.
$$36x^2 - 1 = 0$$

3.
$$2x^2 + 7 = 41$$

4.
$$-\frac{2}{3}x^2 - 19 = -35$$

Imaginary Numbers

Date:

Simplify each expression:

1.
$$\sqrt{-16}$$

2.
$$\sqrt{-5} \cdot \sqrt{-12} \cdot \sqrt{-3}$$

4.
$$i^{67}$$

Solve the equations below:

5.
$$x^2 + 100 = 0$$

5.
$$x^2 + 100 = 0$$
 6. $7 - 3x^2 = 211$

Simplify each expression:

1.
$$(-9-i)-(4-3i)$$

2.
$$(2+5i)(-4-3i)$$

3.
$$\frac{14}{2i}$$

4.
$$\frac{4-5i}{2+4i}$$

Simplify, then name all sets to which the value belongs:

5.
$$\sqrt{-6} \cdot \sqrt{-3}$$

6.
$$i^{22}$$

Completing the Square

Date:

Solve by completing the square:

1.
$$x^2 + 12x + 47 = 0$$

2.
$$-4x^2 + 408 = 20 - 8x$$

Date:

Solve by the quadratic formula:

1.
$$10x^2 - 9x = 2x + 6$$

2.
$$-x^2 = 8x + 26$$

The Discriminant

Date:

Find the discriminant, then determine the number and type of roots:

1.
$$-2x^2 + 14x - 23 = 0$$
 2. $16x^2 - 8x + 1 = 0$

2.
$$16x^2 - 8x + 1 = 0$$

3.
$$x^2 - 10x + 31 = 0$$

4.
$$3x^2 - 12 = 0$$

	Date:				
Choosing the Best Method	Solve one equation by factoring and the other by completing the square. Explain your reasoning. 1. $x^2-14x+37=0$				
	$2x - x^2 - 9x + 136 = 0$				

Date:

Quadratic Applications

1. The dimensions of a square are altered so that 10 inches is added to one side while 1 inch is subtracted from the other. The area of the resulting rectangle is 80 in². How much larger is the area of the rectangle compared to the square?

2. Find three consecutive positive even integers such that the product of the median and largest integer is 6 less than 21 times the smallest integer.

	Date:		
		threw a football from a platform to his The height of the football, h , at time t	
ļ	seconds is modeled by the equation $h(t) = -16t^2 + 28t + 15$.		
	1. What is the maxim	mum height of the ball?	

2. If the quarterback caught the ball at a height of 6 feet, how many seconds was the ball in the air?

3. Give the domain and range of the function.

Date:

Quadratic Regression

Projectile Motion

The table below shows the number of homes that were listed for sale in a small community last year.

Month	May	June	July	Aug.	Sept.
# of homes	73	76	80	74	68

- **1.** Use a quadratic model to write an equation for the curve of best fit.
- **2.** Find the approximate number of homes that were listed for sale in February.
- 3. Why would this particular data follow a quadratic pattern?