Name:		Date:	
Торіс:		Class:	
Main Ideas/Questions	Notes/Examples		
EXPONENTIAL Parent Function	 If <i>b</i> > 1, the function is an		
ASYMPTOTE			
	exponential growth or decay, graph, t	then identify its key characteristics.	
1. $f(x) = 2^x$		Domain: Range: End Behavior: $\Rightarrow x$ As $x \rightarrow \infty$, $f(x) \rightarrow$ As $x \rightarrow -\infty$, $f(x) \rightarrow$ y-intercept: Asymptote:	
2. $f(x) = 3^x$		Domain: Range: End Behavior: $\Rightarrow x$ As $x \rightarrow \infty$, $f(x) \rightarrow$ As $x \rightarrow -\infty$, $f(x) \rightarrow$ y-intercept: Asymptote:	

4

 \bigcirc

 \bigcirc

Name:			Date:
Торіс:			Class:
Main Ideas/Questions	Notes/Examples		
TRANFORMATIONS of Exponential Junctions $f(x) = a \cdot b^{x-h} + k$ Directions: (a) Identify the p	• <i>k</i> is the	sł	·································
1. $f(x) = 3^x + 5$	2. $f(x)$	= 2	$2 \cdot \left(\frac{1}{4}\right)^{x-1}$
3. $f(x) = -\left(\frac{4}{3}\right)^{x+2} + 7$	4. f(x):	=	··5 ^{x-4} – 2
	nction and identify its key characte	eri	tics.
5. $f(x) = 2^{x+5}$			Domain: Range: End Behavior: $As \ x \rightarrow \infty, \ f(x) \rightarrow \$ $As \ x \rightarrow -\infty, \ f(x) \rightarrow \$ <i>y</i> -intercept: Asymptote:

4

 \bigcirc

Name:		Date:	
Торіс:			Class:
Main Ideas/Questions	Note	s/Examples	
SOLVING	1	Use the properties of exponents to SIMPLIFY each side of the equation.	

EXPONENTIAL (2) Rewrite the equation so both sides have the **SAME BASE**.

(3) Drop the bases and SET THE EXPONENTS EQUAL TO EACH OTHER.

<u> </u>	
Type 1 – Equations with a Common Base	
1. $2^{x+1} = 2^9$	2. $5^{4n+5} = 5^{n-7}$
	<i>ب</i>
3. $3^k \cdot 3^{k+2} = 3^{5k-1}$	4. $10^{-4} \cdot 10^9 = 10^{\nu+4} \cdot 10^{2\nu-11}$

Type 2 – Equations without a Common Base 5. 6^{2x-10} – 36

EQUATIONS

	6. $2^{p-7} = 8$
7. $7^{4x+11} = \frac{1}{7}$	8. $32 = 2^{2m-9}$
9. $27^{2x+6} = 3^{2x}$	10. $4^{y+2} = 16^{y-3}$

11. $125^{\gamma} = 25$	12. $16^{3x} = 8^{x+2}$	
personal de la la deseguera de la construcción de		
2	2	
13. $4^{3x} = 8^{x-1}$	14. $81^{2x+5} = \left(\frac{1}{3}\right)^{2x}$	
	14. $81^{-1} = \frac{-}{3}$	
	(3)	
$a = a^2 a^{-1} = a^2 a^{+1}$	$4 = 27^{2} r = 242 r^{-2}$	
15. $8^{2a-1} = 32^{2a+1}$	16. $27^{2x} = 243^{x-2}$	
17. $64 = 4 \cdot 4^{4x}$	2	
17.04 = 4.4	18. $9^{2x+4} \cdot 9^{2x} = \frac{1}{81}$	
	81	
5		
1 - 1 + -5 - x - 9	$20. 4^{2x} \cdot \frac{1}{16} = 4^{6x + 18}$	
19. $\frac{1}{7} = 49^{x-5} \cdot 7^{x-9}$	20. $4^{-1} \cdot \frac{16}{16} = 4^{-1} \cdot \frac{16}{16}$	
/	10	

	Name:		Date:	
	Торіс:		Class:	
	Main Ideas/Questions	Notes/Examples		
	What is a	A logarithm (log) is another way of writing exponents.		
	LOGARITHM?	Logarithmic Form	Exponential Form	
		$\log_b a = x$		
			ase b of a equals x."	
	Converting LOG ⊃ EXP	Directions: Write each equation in e 1. log ₃ 9 = 2	2. $\log_6 216 = 3$	
		3. log ₇ 1 = 0	4. log ₂ 16 = 4	
		5. $\log_4 \frac{1}{16} = -2$	6. $\log_9 27 = \frac{3}{2}$	
	Converting	Directions: Write each equation in Ic		
	EXP ♀ LOG	7. 14 ² = 196	8. 3 ⁴ = 81	
		9. 12 ¹ = 12	10. $36^{\frac{1}{2}} = 6$	
0		11. $2^{-3} = \frac{1}{8}$	12. $8^{\frac{4}{3}} = 16$	

.

COMMON LOGARITHM	A logarithm with base 10 is called a common logarithm and can be written without the base. $\log_{10} x \rightarrow$		
EVALUATING LOGARITHMS	Directions: Use your knowledge of exp logarithms. 13. log ₇ 49	ur knowledge of exponents to evaluate the following 14. log ₃ 27	
	15. log 100	16. log ₁₂ 1	
	17. log ₂ 64	18. log ₃ 243	
	19. $\log_9 \frac{1}{81}$	20. log ₆₄ 4	
CHANGE OF BASE FORMULA	Some logarithms are not as easy evaluate as those above, and w require the change of base formu	vill $\log_b a =$	
Choose BASE 10 because there is a calculator button for it1	Directions: Evaluate each log using the 21. log ₁₆ 64	e change of base formula. 22. log₈ 32	
	23. log ₂ 54	24. log ₁₀ 294	
	25. log ₄ 136	26. $\log_6 \frac{1}{36}$	

Name:	Date:
Торіс:	Class:

Main Ideas/Questions	Notes/Examples				
	Condense into a single logarithm. Simplify if possible.				
Product Property $\log_b(m \cdot n) =$	1. log ₂ 7 + log ₂ 4	2. log 25 + log 4	3. $\log_4 2x + \log_4 4x^2$		
	Expand using the product property.				
	4. log 6	5. log ₇ 45	6. $\log_2(5x)$		
	Condense into a single lo	garithm. Simplify if possible	9.		
Quotient Property $\log_b\left(\frac{m}{n}\right) =$	7. log ₃ 24 – log ₃ 8	8. log ₂ 15 – log ₂ 15	9. $\log_4 x^9 - \log_4 x^2$		
Expand using the quotient property.			I		
	10. log ₈ 4	11. $\log_5 \frac{1}{3}$	12. $\log\left(\frac{m}{7}\right)$		
	Condense into a single lo	garithm. Simplify if possible	e.		
Power Property $\log_b m^n =$	13. 5 · log ₄ 2	14. 7 · log ₂ x	15. ¹ / ₃ · log 8		
	Expand using the power r	property. Simplify if possible	·		
	16. log ₂ 8 ⁷	17. 3 · log 4 ^{x-1}	18. log ₇ √w		

, O

	Putting it All	Together!	
	Directions: Rewrite as a single logarithm. Simp	lify if possible.	
	19. 2 · log 6 – log 9	20. $4 \cdot \log_4 a + 2 \cdot \log_4 b$	
CONDENSING LOGS	21. $7 \cdot \log_4 u - 3 \cdot \log_4 v^2$	22. log ₂ 15 + log ₂ 4 - log ₂ 6	
NDENS	23. $\log_3 4 + \log_3 y + \frac{1}{2} \cdot \log_3 49$	24. $\frac{1}{3} (\log_5 8 + \log_5 27) - \log_5 3$	
CO	25. 3 · log ₂ 4 – log ₂ 32	26. $2 \cdot \log 6 - \frac{1}{4} \cdot \log 16 + \log 3$	
	Directions: Expand each logarithm.		
LOGS	27. $\log_6(xyz^4)$	28. $\log_4\left(\frac{a^9}{b}\right)$	
EXPANDING LOGS	29. $\log_7 (q^4 r^2)^2$	30. $\log_2\left(\frac{y}{z^5}\right)^2$	
EXP	31. $\log \sqrt{7x^3}$	32. $\log_3 \sqrt[4]{m^5 n^2}$	

PROPERTIES OF LOGARITHMS

GRAPHIC ORGANIZER

Name	Rule(s)	Example 1	Example 2
BASIC LOGARITHMS	$\log_b b = ; \log_b 1 =$	Simplify: log ₁₄ 14 =	Simplify: log ₃ 1=
PRODUCT RULE	$\log_b(m \cdot n) =$	Condense: log ₅ 6 + log ₅ 7 =	Expand: log ₂ 63 =
QUOTIENT RULE	$\log_b\left(\frac{m}{n}\right) =$	Condense: log ₄ 84 – log ₄ 12 =	Expand: log 9 =
POWER RULE	$\log_b m^n =$	Condense: 2 · log ₃ 8 =	Expand: log ₂ 6 ^{x-1} =
CHANGE OF BASE FORMULA	$\log_b a =$		n base, evaluate sion below.
REMEMBER: BASE 10 LOGS ARE COMMON LOGS AND WRITTEN WITHOUT A BASE! ($\log x$)			

Name:	Date:
Торіс:	Class:

Main Ideas/Questions	Note	s/Examples		
Logarithmic Equations	1	CONDENSE each logarithm.		
TYPE I: LOG = LOG	2	Use the One-to-One Property: If $\log_b m = \log_b n$, then		
	3	SOLVE and CHECK FOR EXTRANE	OUS SOLUTIONS.	
	1. log	$g_5(5x+9) = \log_5(6x)$	2. $\log_2(1-4n) = \log_2(2n+43)$	
	3. log	$g_9(6-3w) = \log_9(-2w)$	4. $\log(y+5) + \log 4 = \log 72$	
	5 3.	$\log_7 4 = \log_7 (4a - 8)$	6. $\log_4 68 - \log_4 4 = \log_4(3n+11)$	
	7. $\frac{1}{2}$	$\cdot \log_6 25 = \log_6 (23 - 4w)$	8. $\log_3(2p-5) = 2 \cdot \log_3 6 - \log_3 4$	

0		9. $\log_4(m^2) = \log_4(18 - 7m)$	10. $\log 2 + \log (k^2) = \log (k^2 + 16)$
	TYPE 2: Log = NUMBER	 CONDENSE and ISOLATE the log Write the equation in EXPONEN SOLVE and CHECK FOR EXTRAN 	TIAL FORM.
		11. $\log_2(x-4) = 6$	12. $\log_3(4x+8) - 7 = -3$
0			
		13. $\log(2x) + \log(x - 5) = 2$	14. $2 \cdot \log x - \log 4 = 2$
		15. $\log_6(x+9) + \log_6 x = 2$	16. $\log(x-3) + \log x = 1$
\bigcirc			

Name:	Date:
Торіс:	Class:

Main Ideas/Questions	Notes/Examples		
	Directions: Solve the equations below using a common base.		
WARM-UP Using a common base to solve an exponential equation.	1. $5^{n+10} = 25$	2. $9^{a+2} = 27^{4a-2}$	
What if a common base	1 ISOLATE the exponential express	sion.	
is NOT possible?	2 TAKE THE LOG of both sides.		
	3 You may need to EXPAND the lo		
	4 SOLVE and CHECK FOR EXTRANEOUS SOLUTIONS.		
	*Rounded answers may not produce the exact same answer, but will be very close.		
Examples	3. 2 ^{<i>x</i>} = 61	4. 8 ^{<i>m</i>-7} = 92	
	5. $4 \cdot 7^n = 148$	6. $4^{3w} - 5 = 3$	

7. $7 - 4^{x+1} = 18$	8. $10 \cdot 5^{3k-3} = 40$
9. $4 \cdot 3^n + 15 = 359$	10. $-2 \cdot 5^p + 7 = -63$
11. $5 \cdot 9^{\nu - 1} + 1 = 181$	12. $8 \cdot 11^{7k} - 3 = 213$
II . J . J + I = 101	12. $0.11 - 3 = 213$
	5
13. $6 \cdot 16^{7y+2} - 2 = 82$	14. $3 \cdot 8^{3-7n} + 10 = 94$

LOGARITHMIC & EXPONENTIAL EQUATIONS REVIEW

Directions: Work **together** to sole each equation. Do not divide up the work! Each person should be participating. At the end of class, one person's paper will be chosen at random and graded for the group.

LOGARITHMIC EQUATIONS

1. $\log_7(9x-4) = \log_7(x+20)$	2. $\log_5(m^2 - 12) = \log_5 m$
3. $\log_3 4 + \log_3(a+5) = \log_3 56$	4. $\log(2y-10) = 7 \cdot \log 2 - \log 8$
5. $\log_4(5m+9) = 3$	6. $\log_{36} (20 - 4p) = \frac{1}{2}$
7. $\log_6(7k-1) = 3$	8. $\log (n+8) + \log 4 = 2$

EXPONENTIAL EQUATIONS

9. $25^{\nu-2} = 625$	10. $\frac{1}{16} = 8^{4x-2}$
11. $8^k = 78$	12. $9^{m-6} = 78$
13. $15^{3a} + 7 = 67$	14. $14^{3-8x} + 9 = 77$
15. $8 \cdot 3^{n-1} - 21 = 51$	16. $2 \cdot 18^{10r-3} - 1 = 73$

Name:	Date:
Торіс:	Class:

Main Ideas/Questions	Notes/Examples		
What is "e"?	value of	wit base of exponential and log	h an approximate
Base "e" Exponential Functions	 Exponential functions with base <i>e</i> are called		
Base "e" Logarithmic Functions	 Logarithmic functions with base <i>e</i> are called		
Converting Between Forms	Write each equation in log 1. $e^x = 24$	2. $e^9 = x$	3. $e^{x+5} = 72$
	Write each equation in ex	nonential form	
×	4. $\ln x = 58$	5. In $6 = x$	6. In $(x - 9) = 32$
Simplifying with	Condense each expressio	n into a single logarithm.	
Properties	7. ln 3 + ln 16	8. In 63 – 2 · In 3	9. $\frac{1}{3} \cdot \ln 64 + 2 \cdot \ln x$
	Expand each logarithm.		
	10. ln 5 <i>x</i>	11. $\ln\left(\frac{a^3}{b}\right)^2$	12. In ³ √m ² n

Solvina	Solve each equation below. Checl	
Solving Equations	13. $\ln(4x - 27) = \ln(15 - 2x)$	14. $2 \cdot \ln k = \ln(2k + 15)$
	15. In 72 – In 4 = In 6 + In(a – 2)	16. $2 \cdot \ln(m+4) = \ln 4$
	17. In 8 <i>x</i> = 2	18. ln <i>x</i> – ln 9 = 7
,	19. <i>e</i> ^{<i>x</i>} = 57	20. $e^{y+3} - 6 = 24$
	21. 5 <i>e</i> ⁴ⁿ = 95	22. $2e^{c-9} + 3 = 87$

ð

,

Name:	Date:
Topic:	Class:

Main Ideas/Questions	Notes/Examples	
Exponential	Occurs when a quantity exponentially increases over time.	
Growth	Formula:	a = r = t =
Examples	 The original value of an investment is \$1,800. If the value has increased by 7% each year, write an exponential function to model the situation. Then, find the value of the investment after 15 years. 	
	2. In 2002, there were 972 students enror then, the number of students has incr exponential function to model the situ enrolled in 2014.	
Eupopontial	Occurs when a quantity exponentially decreases over time.	
Exponential Decay	Formula:	a = r = t =
Examples	3. An investment of \$12,000 is losing value at a rate of 4% each year. Write an exponential function to model the situation, then find the value of the investment after 9 years.	
	4. Mark bought a brand new car for \$35, value approximately 8% each year, w situation. Then, find the value of the	rite an exponential function to model the

Compound	Occurs when interest is calculated on both the principal amount AND the accrued interest thus far.
Interest	Formula: P = r = n =
	t =
Examples	money will she have in 5 years if the interest is compounded quarterly?
	6. Jack took out a 6-year loan for \$25,000 to purchase a boat at a 4.5% interest rate. If the interest is compounded monthly, what will he have paid total over the course of the loan?
	7. An investment account pays 3.9% interest compounded semi-annually. If \$4,000 is invested in this account, what will be the balance after 12 years?
	8. A savings account offers 0.8% interest compounded bimonthly. If Bob deposited \$300 into this account, how much interest will he earn after 10 years?
	 9. Suppose you invest \$750 into an account that pays 3% interest compounded weekly. How much interest will you have earned after 20 years?

,D

1

Name:	Date:
Topic:	Class:

Main Ide	eas/Questions	Notes/Examples	
		1. The table to the left shows the year and population (in millions) of Texas.	
Year	Population	Using an exponential model , write an equation for the curve of best fit, then estimate the population of Texas in 2020.	
1900	3.1		
1920	4.6		
1940	6.4		
1960	9.5		
1980	14.2		
		2. The table to the left sows the closing prices for the NASDAQ Stock Index at	
Year	Closing Price (\$)	the end of February during certain years. Using an exponential model , write an equation for the curve of best fit, then estimate the year the	
1992	633	closing price will reach \$10,000	
1994	793		
1996	1,100		
1998	1,771		
2000	4,696		
Year	Population	3. The table to the left gives the percent of all workers who are female during selected years from 1970 to 2006. Using a logarithmic model , write an	
1970	30.0	equation for the curve of best fit, then estimate the percent of female workers in in 2016.	
1980	35.3		
1985	37.9		
1990	37.2		
2006	41.5		
Age	Height	4. The table to the left shows the height (in feet) of a pine tree in the park. When it was originally planted, it was one year old and had a height of four	
1	4	feet. Using a logarithmic model, write an equation for the curve of best	
2	6.3	fit, determine the age of the tree at 20 feet.	
3	7.9		
4	9.2		
5	10.3		

