

3. $f(x)=\left(\frac{1}{2}\right)^{x}$									 		Domain: \qquad Range: \qquad End Behavior: As $x \rightarrow \infty, \quad f(x) \rightarrow$ As $x \rightarrow-\infty, f(x) \rightarrow$ y-intercept: \qquad Asymptote: \qquad
4. $f(x)=\left(\frac{2}{3}\right)^{x}$											Domain: \qquad Range: \qquad End Behavior: As $x \rightarrow \infty, \quad f(x) \rightarrow$ As $x \rightarrow-\infty, f(x) \rightarrow$ y-intercept: \qquad Asymptote: \qquad
5. $f(x)=\left(\frac{5}{2}\right)^{x}$											Domain: \qquad Range: \qquad End Behavior: As $x \rightarrow \infty, \quad f(x) \rightarrow$ As $x \rightarrow-\infty, f(x) \rightarrow$ y-intercept: \qquad Asymptote: \qquad

Name:			Date:
Topic:			Class:
Main Ideas/Questions	Notes/Examples		
$\begin{aligned} & \text { SOLVING } \\ & \text { EXPONENTIAL } \\ & \text { EQUATIONS } \end{aligned}$	(1)	Use the properties of exponents to SIMPLIFY each side of the equation.	
	(2)	Rewrite the equation so both sides have the SAME BASE.	
	(3)	Drop the bases and SET THE EXPONENTS EQUAL TO EACH OTHER.	

Type 1 - Equations with a Common Base

1. $2^{x+1}=2^{9}$	2. $5^{4 n+5}=5^{n-7}$
3. $3^{k} \cdot 3^{k+2}=3^{5 k-1}$	$4 \cdot 10^{-4} \cdot 10^{9}=10^{v+4} \cdot 10^{2 v-11}$

Type 2 - Equations without a Common Base
5. $6^{2 x-10}=36$
8. $32=2^{2 m-9}$
9. $27^{2 x+6}=3^{2 x}$
10. $4^{y+2}=16^{y-3}$

COMMON LOGARITHM	A logarithm with base 10 is called a common logarithm and can be written without the base.	
EVALUATING LOGARITHMS	Directions: Use your knowledge of exponents to evaluate the following logarithms. 13. $\log _{7} 49$	

Name:			Date:
Topic:			Class:
Main Ideas/Questions	Notes/Examples		
Product Property	Condense into a single logarithm. Simplify if possible.		
	1. $\log _{2} 7+\log _{2} 4$	2. $\log 25+\log 4$	3. $\log _{4} 2 x+\log _{4} 4 x^{2}$
$\log _{b}(m \cdot n)=$	Expand using the product property.		
	4. $\log 6$	5. $\log _{7} 45$	6. $\log _{2}(5 x)$
Quotient Property	Condense into a single logarithm. Simplify if possible.		
	7. $\log _{3} 24-\log _{3} 8$	8. $\log _{2} 15-\log _{2} 15$	9. $\log _{4} x^{9}-\log _{4} x^{2}$
-	Expand using the quotient property.		
	10. $\log _{8} 4$	11. $\log _{5} \frac{1}{3}$	12. $\log \left(\frac{m}{7}\right)$
Power Property	Condense into a single logarithm. Simplify if possible.		
	13. $5 \cdot \log _{4} 2$	14. $7 \cdot \log _{2} x$	15. $\frac{1}{3} \cdot \log 8$
$\log _{b} m^{n}=$	Expand using the power property. Simplify if possible.		
	16. $\log _{2} 8^{7}$	17. $3 \cdot \log 4^{x-1}$	18. $\log _{7} \sqrt{w}$

Putting it All Together!

Directions: Rewrite as a single logarithm. Simplify if possible.
19. $2 \cdot \log 6-\log 9$
20. $4 \cdot \log _{4} a+2 \cdot \log _{4} b$
21. $7 \cdot \log _{4} u-3 \cdot \log _{4} v^{2}$
22. $\log _{2} 15+\log _{2} 4-\log _{2} 6$
23. $\log _{3} 4+\log _{3} y+\frac{1}{2} \cdot \log _{3} 49$
24. $\frac{1}{3}\left(\log _{5} 8+\log _{5} 27\right)-\log _{5} 3$
25. $3 \cdot \log _{2} 4-\log _{2} 32$
26. $2 \cdot \log 6-\frac{1}{4} \cdot \log 16+\log 3$

Directions: Expand each logarithm.
27. $\log _{6}\left(x y z^{4}\right)$
28. $\log _{4}\left(\frac{a^{9}}{b}\right)$
29. $\log _{7}\left(q^{4} r^{2}\right)^{2}$
31. $\log \sqrt{7 x^{3}}$
32. $\log _{3} \sqrt[4]{m^{5} n^{2}}$

PROPERTIES OF LOGARITHMS

GRAPHIC ORGANIZER

Name	Rule(s)	Example 1	Example 2
BASIC LOGARITHMS	$\log _{b} b=\quad ; \log _{b} 1=$	$\begin{aligned} & \text { Simplify: } \\ & \log _{14} 14= \end{aligned}$	$\begin{aligned} & \text { Simplify: } \\ & \log _{3} 1= \end{aligned}$
$\begin{aligned} & \text { PRODUCT } \\ & \text { RULE } \end{aligned}$	$\log _{b}(m \cdot n)=$	Condense: $\log _{5} 6+\log _{5} 7=$	Expand: $\log _{2} 63=$
QUOTIENT RULE	$\log _{b}\left(\frac{m}{n}\right)=$	Condense: $\log _{4} 84-\log _{4} 12=$	Expand: $\log 9=$
POWER RULE	$\log _{b} m^{n}=$	Condense: $2 \cdot \log _{3} 8=$	Expand: $\log _{2} 6^{x-1}=$
CHANGE OF BASE FORMULA	$\log _{b} a=$	Using a common base, evaluate the expression below. $\log _{7} 32=$	
REMEMBER:	ASE 10 LOGS ARE COMMO	WRITEEN WITHOU	BASE! ($\log x$)

Name:	Date:
Topic:	Class:

Main Ideas/Questions	Notes/Examples
LOGARITHMIC Farent Junction \square	A logarithmic function is the inverse of an exponential function. Using your graphing calculator, sketch the following graphs: $f(x)=\log x$ $f(x)=10^{x}$
	Because you can only graph base 10 logs on your calculator, you will need to use the inverse exponential function, then invert the values from the table to graph the logarithmic function.
Directions: Graph each function and identify its key characteristics.	
1. $f(x)=\log _{2} x$	 Domain: \qquad Range: \qquad End Behavior: As $x \rightarrow$ \qquad , $f(x) \rightarrow \infty$ As $x \rightarrow$ \qquad , $f(x) \rightarrow-\infty$ \boldsymbol{x}-intercept: \qquad Asymptote: \qquad
2. $f(x)=\log _{\frac{1}{3}} x$	 Domain: \qquad Range: \qquad End Behavior: As $x \rightarrow$ \qquad $f(x) \rightarrow \infty$ As $x \rightarrow$ \qquad , $f(x) \rightarrow-\infty$ \boldsymbol{x}-intercept: \qquad Asympiote: \qquad

Name:

Date:

Topic:

Class:

Main Ideas/Questions	Notes/Examples		
Logarithmic Equations TYPE I: LOG = LOG	$\begin{array}{\|l\|} \hline \text { (1) } \\ \hline(2) \end{array}$	CONDENSE each logarithm.	
	(2) Use the One-to-One Property: If $\log _{b} m=\log _{b} n$, then (3) SOLVE and CHECK FOR EXTRANEOUS SOLUTIONS.		
	1. $\log _{5}(5 x+9)=\log _{5}(6 x)$		2. $\log _{2}(1-4 n)=\log _{2}(2 n+43)$
	3. $\log _{9}(6-3 w)=\log _{9}(-2 w)$		4. $\log (y+5)+\log 4=\log 72$
	5. $3 \cdot \log _{7} 4=\log _{7}(4 a-8)$		6. $\log _{4} 68-\log _{4} 4=\log _{4}(3 n+11)$
	7. $\frac{1}{2}$	$\mathrm{g}_{6} 25=\log _{6}(23-4 w)$	8. $\log _{3}(2 p-5)=2 \cdot \log _{3} 6-\log _{3} 4$

Name:			Date:
Topic:			Class:
Main Ideas/Questions	Notes/Examples		
WARM-UP Using a common base to solve an exponential equation.	Directions: Solve the equations below using a common base.		
	1. $5^{n+10}=25$		2. $9^{a+2}=27^{4 a-2}$
What if a common base is NOT possible?	(1) ISOLATE the exponential expression.		
	(2) TAKE THE LOG of both sides.		
	(3) You may need to EXPAND the log. (Use the Power Rule)		
	(4) SOLVE and CHECK FOR EXTRANEOUS SOLUTIONS.		
	*Rounded answers may not produce the exact same answer, but will be very close.		
Examples	3. $2^{x}=61$		4. $8^{m-7}=92$
			6. $4^{3 w}-5=3$

\qquad

LOGARITHMIC \& EXPONENTIAL EQUATIONS REVIEW

Directions: Work together to sole each equation. Do not divide up the work! Each person should be participating. At the end of class, one person's paper will be chosen at random and graded for the group.
LOGARITHMIC EQUATIONS

1. $\log _{7}(9 x-4)=\log _{7}(x+20)$	2. $\log _{5}\left(m^{2}-12\right)=\log _{5} m$
3. $\log _{3} 4+\log _{3}(a+5)=\log _{3} 56$	4. $\log (2 y-10)=7 \cdot \log 2-\log 8$
5. $\log _{4}(5 m+9)=3$	$6 . \log _{36}(20-4 p)=\frac{1}{2}$

EXPONENTIAL EQUATIONS

Solving Equations	Solve each equation below. Check for extraneous solutions.	
	13. $\ln (4 x-27)=\ln (15-2 x)$	14. $2 \cdot \ln k=\ln (2 k+15)$
	15. $\ln 72-\ln 4=\ln 6+\ln (a-2)$	16. $2 \cdot \ln (m+4)=\ln 4$
	17. $\ln 8 x=2$	18. $\ln x-\ln 9=7$
	19. $e^{x}=57$	20. $e^{y+3}-6=24$
	21. $5 e^{4 n}=95$	22. $2 e^{c-9}+3=87$

Name:	Date:
Topic:	Class:

Main Ideas/Questions	Notes/Examples	
Exponential	Occurs when a quantity exponentially increases over time.	
Growth	Formula:	
Examples	1. The original value of an investment is $\$ 1,800$. If the value has increased by 7% each year, write an exponential function to model the situation. Then, find the value of the investment after 15 years.	

2. In 2002, there were 972 students enrolled at Oakview High School. Since then, the number of students has increased by 1.5% each year. Write an exponential function to model the situation, then find the number of students enrolled in 2014.

Exponential Decay

Examples

Occurs when a quantity exponentially decreases over time.

Formula:

$$
\begin{aligned}
& a= \\
& r= \\
& t=
\end{aligned}
$$

3. An investment of $\$ 12,000$ is losing value at a rate of 4% each year. Write an exponential function to model the situation, then find the value of the investment after 9 years.
4. Mark bought a brand new car for $\$ 35,000$ in 2008. If the car depreciates in value approximately 8% each year, write an exponential function to model the situation. Then, find the value of the car in 2015.

Compound	Occurs when interest is calculated on both the principal amount AND the accrued interest thus far.
Interest	Formula: $\begin{aligned} & P= \\ & r= \\ & n= \\ & t= \end{aligned}$
Examples	5. Laura deposited $\$ 12,000$ into an account that earns 8% interest. How much money will she have in 5 years if the interest is compounded quarterly?
	6. Jack took out a 6-year loan for $\$ 25,000$ to purchase a boat at a 4.5% interest rate. If the interest is compounded monthly, what wil he have paid total over the course of the loan?
	7. An investment account pays 3.9% interest compounded semi-annually. If $\$ 4,000$ is invested in this account, what will be the balance after 12 years?
	8. A savings account offers 0.8% interest compounded bimonthly. If Bob deposited $\$ 300$ into this account, how much interest will he earn after 10 years?
	9. Suppose you invest $\$ 750$ into an account that pays 3% interest compounded weekly. How much interest will you have earned after 20 years?

\square

Topic:

Class:

Main Ideas/Questions	
Year Population 1900 3.1 1920 4.6 1940 6.4 1960 9.5 1980 14.2	

Year	Closing Price (\$)
1992	633
1994	793
1996	1,100
1998	1,771
2000	4,696

2. The table to the left sows the closing prices for the NASDAQ Stock Index at the end of February during certain years. Using an exponential model, write an equation for the curve of best fit, then estimate the year the closing price will reach $\$ 10,000$

Year	Population
1970	30.0
1980	35.3
1985	37.9
1990	37.2
2006	41.5

3. The table to the left gives the percent of all workers who are female during selected years from 1970 to 2006. Using a logarithmic model, write an equation for the curve of best fit, then estimate the percent of female workers in in 2016.

Age	Height
1	4
2	6.3
3	7.9
4	9.2
5	10.3

4. The table to the left shows the height (in feet) of a pine tree in the park. When it was originally planted, it was one year old and had a height of four feet. Using a logarithmic model, write an equation for the curve of best fit, determine the age of the tree at 20 feet.

